dc.creatorLuz, Cleverson Roberto da
dc.creatorPalma, Maíra Fernandes Gauer
dc.date2021-03-01
dc.date.accessioned2023-09-27T19:35:17Z
dc.date.available2023-09-27T19:35:17Z
dc.identifierhttps://periodicos.ufsm.br/cienciaenatura/article/view/41963
dc.identifier10.5902/2179460X41963
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8939908
dc.descriptionIn this work we study the asymptotic behavior of solutions for a general linear second-order evolution differential equation in time with fractional Laplace operators in $\mathbb{R}^n$. We obtain improved decay estimates with less demand on the initial data when compared to previous results in the literature. In certain cases, we observe that the dissipative structure of the equation is of regularity-loss type. Due to that special structure, to get decay estimates in high frequency region in the Fourier space it is necessary to impose additional regularity on the initial data to obtain the same decay estimates as in low frequency region. The results obtained in this work can be applied to several initial value problems associated to second-order equations, as for example, wave equation, plate equation, IBq, among others. en-US
dc.formatapplication/pdf
dc.languageeng
dc.publisherUniversidade Federal de Santa Mariaen-US
dc.relationhttps://periodicos.ufsm.br/cienciaenatura/article/view/41963/pdf
dc.rightsCopyright (c) 2021 Ciência e Naturapt-BR
dc.sourceCiência e Natura; Vol. 43 (2021): Continuous Publication; e14en-US
dc.sourceCiência e Natura; v. 43 (2021): Publicação Contínua; e14pt-BR
dc.source2179-460X
dc.source0100-8307
dc.subjectAsymptotic behavioren-US
dc.subjectfractional Laplace operatoren-US
dc.subjectFourier spaceen-US
dc.subjectsecond-order equations.en-US
dc.titleDecay rates for second-order linear evolution problems with fractional laplacian operatorsen-US
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución