dc.creatorPorto, Anderson Luiz Pedrosa
dc.creatorBessa, Vagner Rodrigues de
dc.creatorAguiar, Mattheus Pereira da Silva
dc.creatorVieira, Mariana Martins
dc.date2018-03-27
dc.date.accessioned2023-09-27T19:31:33Z
dc.date.available2023-09-27T19:31:33Z
dc.identifierhttps://periodicos.ufsm.br/cienciaenatura/article/view/27277
dc.identifier10.5902/2179460X27277
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8939293
dc.descriptionIn 1889, Arthur Cayley published an article that contained a formula for counting the spanning trees of a complete graph. This theorem says that: Let n E N  and Kn the complete graph with n vertices. Then the number of spanning trees of Kn is established by n n-2: The present work is constituted by a brief literary review about the basic concepts and results of the graph theory and detailed demonstration of the Cayley’s Formula, given by the meticulous construction of a bijection between the set of the spanning trees and a special set of numeric sequences. At the end we bring an algorithm that describes a precise construction of the spanning trees obtained of Kn from Cayley-Prufer sequences.pt-BR
dc.formatapplication/pdf
dc.languagepor
dc.publisherUniversidade Federal de Santa Mariaen-US
dc.relationhttps://periodicos.ufsm.br/cienciaenatura/article/view/27277/pdf
dc.rightsCopyright (c) 2018 Ciência e Naturapt-BR
dc.sourceCiência e Natura; CIÊNCIA E NATURA, V. 40, 2018; e19en-US
dc.sourceCiência e Natura; CIÊNCIA E NATURA, V. 40, 2018; e19pt-BR
dc.source2179-460X
dc.source0100-8307
dc.subjectTreespt-BR
dc.subjectSpanning Treespt-BR
dc.subjectCayley’s Formulapt-BR
dc.subjectComplete Graphspt-BR
dc.subjectInverse Process of Cayley-Pruferpt-BR
dc.titleCounting of spanning trees of a complete graphpt-BR
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución