Trabalho de conclusão de graduação
Construção e classificação de uma base textual em português
Autor
Oliveira, Thiago do Nascimento
Institución
Resumen
A Web tornou-se um importante meio para disponibilização de informações. Entre as principais dificuldades, nesse contexto dinâmico, estão a busca por informações específicas e a categorização das mesmas. Com a facilidade de acesso à Internet e a possibilidade de qualquer pessoa publicar ou replicar conteúdo online, é preciso ter cuidado ao selecionar as fontes dessas informações. No domínio do setor elétrico não é diferente. Um importante ator, nesse cenário, é o IFE - Informativo Eletrônico do Setor Elétrico - que sintetiza resumos de notícias, obtidas a partir de fontes confiáveis, para profissionais do setor. A aspiração deste trabalho é propor uma metodologia a fim de se criar um modelo de classicação automática de notícias, para oferecer aos seus editores a possibilidade de uma análise rápida, completa e precisa do conteúdo do texto e atribuir de forma mais ágil e eciente as categorias dos resumos de notícias. Uma análise das implementações clássicas
de aprendizado supervisionado de máquina empregando os algoritmos k-Vizinhos-Mais Próximos, Regressão Logística, Naïve Bayes, Máquinas de Vetores de Suporte, Floresta Randômica, e um comitê com esses classicadores foi realizada. Alguns valores candidatos para hiperparâmetros foram comparados e a melhor combinação deles para cada uma das implementações foi configurada em seu treinamento. Este trabalho conclui com a avaliação dos desempenhos alcançados por cada algoritmo na tarefa de classificação de texto no contexto de resumos de notícias do IFE.