Brasil
| Otro
Lattice constellations and codes from quadratic number fields
Registro en:
IEEE Transactions on Information Theory, v. 47, n. 4, p. 1514-1527, 2001.
0018-9448
10.1109/18.923731
WOS:000168790600017
2-s2.0-0035334579
Autor
Pires Da Nóbrega Neto, T.
Interlando, J. C.
Favareto, O. M.
Elia, M.
Palazzo R., Jr
Resumen
We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate.