dc.contributor | Universidade Estadual Paulista (UNESP) | |
dc.creator | Pires Da Nóbrega Neto, T. | |
dc.creator | Interlando, J. C. | |
dc.creator | Favareto, O. M. | |
dc.creator | Elia, M. | |
dc.creator | Palazzo R., Jr | |
dc.date | 2014-05-27T11:20:16Z | |
dc.date | 2016-10-25T18:17:02Z | |
dc.date | 2014-05-27T11:20:16Z | |
dc.date | 2016-10-25T18:17:02Z | |
dc.date | 2001-05-01 | |
dc.date.accessioned | 2017-04-06T00:59:30Z | |
dc.date.available | 2017-04-06T00:59:30Z | |
dc.identifier | IEEE Transactions on Information Theory, v. 47, n. 4, p. 1514-1527, 2001. | |
dc.identifier | 0018-9448 | |
dc.identifier | http://hdl.handle.net/11449/66509 | |
dc.identifier | http://acervodigital.unesp.br/handle/11449/66509 | |
dc.identifier | 10.1109/18.923731 | |
dc.identifier | WOS:000168790600017 | |
dc.identifier | 2-s2.0-0035334579 | |
dc.identifier | http://dx.doi.org/10.1109/18.923731 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/888069 | |
dc.description | We propose new classes of linear codes over integer rings of quadratic extensions of Q, the field of rational numbers. The codes are considered with respect to a Mannheim metric, which is a Manhattan metric modulo a two-dimensional (2-D) grid. In particular, codes over Gaussian integers and Eisenstein-Jacobi integers are extensively studied. Decoding algorithms are proposed for these codes when up to two coordinates of a transmitted code vector are affected by errors of arbitrary Mannheim weight. Moreover, we show that the proposed codes are maximum-distance separable (MDS), with respect to the Hamming distance. The practical interest in such Mannheim-metric codes is their use in coded modulation schemes based on quadrature amplitude modulation (QAM)-type constellations, for which neither the Hamming nor the Lee metric is appropriate. | |
dc.language | eng | |
dc.relation | IEEE Transactions on Information Theory | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Algebraic decoding | |
dc.subject | Euclidean domains | |
dc.subject | Lattices | |
dc.subject | Linear codes | |
dc.subject | Mannheim distance | |
dc.subject | Number fields | |
dc.subject | Signal sets matched to groups | |
dc.subject | Algorithms | |
dc.subject | Codes (symbols) | |
dc.subject | Decoding | |
dc.subject | Error analysis | |
dc.subject | Linearization | |
dc.subject | Maximum likelihood estimation | |
dc.subject | Maximum principle | |
dc.subject | Number theory | |
dc.subject | Quadratic programming | |
dc.subject | Quadrature amplitude modulation | |
dc.subject | Two dimensional | |
dc.subject | Vector quantization | |
dc.subject | Einstein-Jacobi integers | |
dc.subject | Gaussian integers | |
dc.subject | Hamming distance | |
dc.subject | Lattice codes | |
dc.subject | Lattice constellations | |
dc.subject | Manhattan metric modulo | |
dc.subject | Mannheim metric | |
dc.subject | Maximum distance separable | |
dc.subject | Quadratic number fields | |
dc.subject | Information theory | |
dc.title | Lattice constellations and codes from quadratic number fields | |
dc.type | Otro | |