Article
Inheritance and heritability of deltamethrin resistance under laboratory conditions of Triatoma infestans from Bolivia
Registro en:
GOMEZ, Marinely Bustamante Blanca et al. Inheritance and heritability of deltamethrin resistance under laboratory conditions of Triatoma infestans from Bolivia. Parasit Vectors, vol. 8, p. 595, 2015.
1756-3305
10.1186/s13071-015-1211-9
Autor
Gomez, Marinely Blanca Bustamante
Pessoa, Grasielle Caldas D Ávila
Rosa, Aline Cristine Luiz
Echeverria, Jorge Espinoza
Diotaiuti, Liléia Gonçalves
Resumen
Background: Over the last few decades, pyrethroid-resistant in Triatoma infestans populations have been reported, mainly on the border between Argentina and Bolivia. Understanding the genetic basis of inheritance mode and heritability of resistance to insecticides under laboratory conditions is crucial for vector management and monitoring of insecticide resistance. Currently, few studies have been performed to characterize the inheritance mode of resistance to pyrethroids in T. infestans; for this reason, the present study aims to characterize the inheritance and heritability of deltamethrin resistance in T. infestans populations from Bolivia with different toxicological profiles.
Methods: Experimental crosses were performed between a susceptible (S) colony and resistant (R) and reduced susceptibility (RS) colonies in both directions (♀ x ♂ and ♂ x ♀), and inheritance mode was determined based on degree of dominance (DO) and effective dominance (DML). In addition, realized heritability (h2) was estimated based on a resistant colony, and select pressure was performed for two generations based on the diagnostic dose (10 ng. i. a. /nymph). The F1 progeny of the experimental crosses and the selection were tested by a standard insecticide resistance bioassay.
Results: The result for DO and DML (< 1) indicates that resistance is an incompletely dominant character, and inheritance is autosomal, not sex-linked. The LD50 for F1 of ♀S x ♂R and ♂S x ♀R was 0.74 and 3.97, respectively, which is indicative of dilution effect. In the resistant colony, after selection pressure, the value of h2 was 0.37; thus, the LD50 value increased 2.25-fold (F2) and 26.83-fold (F3) compared with the parental colony.
Conclusion: The inheritance mode of resistance of T. infestans to deltamethrin, is autosomal and an incompletely dominant character; this is a previously known process, confirmed in the present study on T. infestans populations from Bolivia. The lethal doses (LD50) increase from one generation to another rapidly after selection pressure with deltamethrin. This suggests that resistance is an additive and cumulative factor, mainly in highly structured populations with limited dispersal capacity, such as T. infestans. This phenomenon was demonstrated for the first time for T. infestans in the present study. These results are very important for vector control strategies in problematic areas where high resistance ratios of T. infestans have been reported.