info:eu-repo/semantics/article
Existence conditions for k-barycentric olson constant
Autor
Marchan,Luz
Ordaz,Oscar
Salazar,José
Villarroel,Felicia
Institución
Resumen
Abstract Let (G, +) be a finite abelian group and 3 ≤ k ≤ |G| a positive integer. The k-barycentric Olson constant denoted by BO(k, G) is defined as the smallest integer ℓ such that each set A of G with |A| = ℓ contains a subset with k elements {a1, . . . , ak} satisfying a1 + · · · + ak = kaj for some 1 ≤ j ≤ k. We establish some general conditions on G assuring the existence of BO(k, G) for each 3 ≤ k ≤ |G|. In particular, from our results we can derive the existence conditions for cyclic groups and for elementary p-groups p ≥ 3. We give a special treatment over the existence condition for the elementary 2-groups.