dc.creatorFührer, Thomas
dc.date.accessioned2023-07-20T16:29:48Z
dc.date.available2023-07-20T16:29:48Z
dc.date.created2023-07-20T16:29:48Z
dc.date.issued2023
dc.identifier10.1515/cmam-2022-0215
dc.identifierhttps://doi.org/10.1515/cmam-2022-0215
dc.identifierhttps://repositorio.uc.cl/handle/11534/74218
dc.description.abstractWe study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H−1 loads. We prove that any bounded H−1 projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.
dc.languageen
dc.rightsacceso restringido
dc.subjectLeast-Squares Method
dc.subjectMixed FEM
dc.subjectSingular Data
dc.titleOn a Mixed FEM and a FOSLS with H−1 Loads
dc.typeartículo


Este ítem pertenece a la siguiente institución