dc.creatorBonilla Moreno, Daniel
dc.creatorMuñoz, Enrique
dc.creatorSoto Garrido, Rodrigo
dc.date.accessioned2023-07-10T13:33:12Z
dc.date.available2023-07-10T13:33:12Z
dc.date.created2023-07-10T13:33:12Z
dc.date.issued2021
dc.identifier10.3390/nano11112972
dc.identifier2079-4991
dc.identifierhttp://doi.org/10.3390/nano11112972
dc.identifierhttps://repositorio.uc.cl/handle/11534/74132
dc.description.abstractHerein, we study electronic and thermoelectric transport in a type I Weyl semimetal nanojunction, with a torsional dislocation defect, in the presence of an external magnetic field parallel to the dislocation axis. The defect is modeled in a cylindrical geometry, as a combination of a gauge field accounting for torsional strain and a delta-potential barrier for the lattice mismatch effect. In the Landauer formalism, we find that due to the combination of strain and magnetic field, the electric current exhibits chiral valley-polarization, and the conductance displays the signature of Landau levels. We also compute the thermal transport coefficients, where a high thermopower and a large figure of merit are predicted for the junction.
dc.languageen
dc.rightsAtribución 4.0 Internacional (CC BY 4.0)
dc.rightshttps://creativecommons.org/licenses/by/4.0/
dc.rightsacceso abierto
dc.subjectWeyl semimetals
dc.subjectTransport
dc.subjectTorsion
dc.subjectDislocation
dc.subjectMagnetic field
dc.titleThermo-Magneto-Electric Transport through a Torsion Dislocation in a Type I Weyl Semimetal
dc.typeartículo


Este ítem pertenece a la siguiente institución