dc.creator | Führer, Thomas | |
dc.creator | Videman, Juha | |
dc.date.accessioned | 2023-07-20T15:44:32Z | |
dc.date.accessioned | 2023-09-14T21:23:42Z | |
dc.date.available | 2023-07-20T15:44:32Z | |
dc.date.available | 2023-09-14T21:23:42Z | |
dc.date.created | 2023-07-20T15:44:32Z | |
dc.date.issued | 2023 | |
dc.identifier | 10.1051/m2an/2023049 | |
dc.identifier | https://doi.org/10.1051/m2an/2023049 | |
dc.identifier | https://repositorio.uc.cl/handle/11534/74215 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8798387 | |
dc.description.abstract | We define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e., independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented. | |
dc.language | en | |
dc.rights | acceso abierto | |
dc.subject | Least-squares finite element method | |
dc.subject | Brinkman equation | |
dc.subject | Darcy equations | |
dc.subject | Singularly perturbed problem | |
dc.subject | First-order formulation | |
dc.title | First-order system least-squares finite element method for singularly perturbed Darcy equations | |
dc.type | artículo | |