dc.creatorFührer, Thomas
dc.creatorVideman, Juha
dc.date.accessioned2023-07-20T15:44:32Z
dc.date.accessioned2023-09-14T21:23:42Z
dc.date.available2023-07-20T15:44:32Z
dc.date.available2023-09-14T21:23:42Z
dc.date.created2023-07-20T15:44:32Z
dc.date.issued2023
dc.identifier10.1051/m2an/2023049
dc.identifierhttps://doi.org/10.1051/m2an/2023049
dc.identifierhttps://repositorio.uc.cl/handle/11534/74215
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8798387
dc.description.abstractWe define and analyse a least-squares finite element method for a first-order reformulation of a scaled Brinkman model of fluid flow through porous media. We introduce a pseudostress variable that allows to eliminate the pressure variable from the system. It can be recovered by a simple post-processing. It is shown that the least-squares functional is uniformly equivalent, i.e., independent of the singular perturbation parameter, to a parameter dependent norm. This norm equivalence implies that the least-squares functional evaluated in the discrete solution provides an efficient and reliable a posteriori error estimator. Numerical experiments are presented.
dc.languageen
dc.rightsacceso abierto
dc.subjectLeast-squares finite element method
dc.subjectBrinkman equation
dc.subjectDarcy equations
dc.subjectSingularly perturbed problem
dc.subjectFirst-order formulation
dc.titleFirst-order system least-squares finite element method for singularly perturbed Darcy equations
dc.typeartículo


Este ítem pertenece a la siguiente institución