dc.creatorAurada, M.
dc.creatorFeischl, M.
dc.creatorFührer, T.
dc.creatorKarkulik, Michael
dc.creatorPraetorius, D.
dc.date.accessioned2023-07-17T16:11:20Z
dc.date.accessioned2023-09-14T21:08:39Z
dc.date.available2023-07-17T16:11:20Z
dc.date.available2023-09-14T21:08:39Z
dc.date.created2023-07-17T16:11:20Z
dc.date.issued2013
dc.identifier10.1515/cmam-2013-0010
dc.identifierhttps://doi.org/10.1515/cmam-2013-0010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84881592248&partnerID=MN8TOARS
dc.identifierhttps://repositorio.uc.cl/handle/11534/74183
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8797977
dc.description.abstractWe prove convergence and quasi-optimality of a lowest-order adaptive boundary element method for a weakly-singular integral equation in 2D. The adaptive mesh-refinement is driven by the weighted-residual error estimator. By proving that this estimator is not only reliable, but under some regularity assumptions on the given data also efficient on locally refined meshes, we characterize the approximation class in terms of the Galerkin error only. In particular, this yields that no adaptive strategy can do better, and the weighted-residual error estimator is thus an optimal choice to steer the adaptive mesh-refinement. As a side result, we prove a weak form of the saturation assumption.
dc.languageen
dc.rightsacceso abierto
dc.subjectA posteriori error estimate
dc.subjectAdaptive algorithm
dc.subjectBoundary element method
dc.subjectConvergence
dc.subjectOptimality
dc.subjectWeakly-singular integral equation
dc.titleEfficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods
dc.typeartículo


Este ítem pertenece a la siguiente institución