Tese de doutorado
Equações diferenciais ordinárias não suaves autônomas e não autônomas
Autonomous and non autonomous non smooth ordinary differential equations
Registro en:
000872676
33004153071P0
6050955861168161
0000-0002-1430-5986
Autor
Silva, Clayton Eduardo Lente da [UNESP]
Resumen
Nesta tese estudamos sistemas dinâmicos não suaves autônomos e não autônomos. Consideramos inicialmente sistemas quadráticos positivamente limitados autônomos planares e damos condições sobre os campos para que o sistema de Filippov correspondente seja limitado. Também estudamos uma classe de sistemas quadráticos e provamos que, sob algumas restrições nos coeficientes da parte linear, os sistemas de Filippov relacionados são limitados. Em seguida, consideramos sistemas não autônomos e damos condições para a existência de soluções periódicas de uma classe de equações diferenciais ordinárias não autônomas. Por fim, consideramos equações diferenciais ordinárias não autônomas de segunda ordem genéricas, relacionadas a sistemas não suaves e não autônomos, estudamos o conceito de solução destas equações e damos condições analíticas que são satisfeitas por soluções típicas, como as soluções deslizantes, por exemplo. A unicidade de soluções para estas equações também é estudada. In this thesis we study autonomous and non-autonomous non-smooth dynamical systems. We initially consider planar autonomous positively bounded quadratic systems. We give conditions on the vector fields for that the correspondent Filippov system be bounded. We also study a class of quadratic systems and we prove that, under some restrictions on the coefficients of linear part, the related Filippov systems are bounded. We then consider non-autonomous systems and we give conditions for the existence of periodic solutions of a certain class of non-autonomous ordinary differential equations. Finally we consider generic non-autonomous second order differential equations and we study the concept of solution of these equations and determine analytical conditions that are satisfied by typical solutions, sliding solutions for instance. Moreover, the uniqueness of solutions for these equations is studied. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)