Artigo
Normal Forms for Polynomial Differential Systems in R-3 Having an Invariant Quadric and a Darboux Invariant
Registro en:
International Journal Of Bifurcation And Chaos, v. 25, n. 1, p. 16, 2015.
0218-1274
10.1142/S0218127415500157
WOS:000349227400017
3757225669056317
Autor
Llibre, Jaume
Messias, Marcelo [UNESP]
Reinol, Alisson de Carvalho [UNESP]
Resumen
We give the normal forms of all polynomial differential systems in R-3 which have a nondegenerate or degenerate quadric as an invariant algebraic surface. We also characterize among these systems those which have a Darboux invariant constructed uniquely using the invariant quadric, giving explicitly their expressions. As an example, we apply the obtained results in the determination of the Darboux invariants for the Chen system with an invariant quadric. MINECO/FEDER AGAUR ICREA Academia Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain UNESP Univ Estadual Paulista, Fac Ciencias &Tecnol, Dept Matemat &Comp, Sao Paulo, Brazil UNESP Univ Estadual Paulista, Fac Ciencias &Tecnol, Dept Matemat &Comp, Sao Paulo, Brazil MINECO/FEDER: MTM2008-03437 MINECO/FEDER: MTM201340998-P AGAUR: 2013SGR-568 CAPES: 88881.030454/2013-01 CNPq: 308315/2012-0 FAPESP: 12/18413-7 FAPESP: 2013/01743-7 : PHB-2009-0025