Dissertação de mestrado
Existência de soluções para equações integrodiferenciais em epaços de Banach
Registro en:
AGRELI, Silvia Dória Felix. Existência de soluções para equações integrodiferenciais em epaços de Banach. 2014. 96 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho, Instituto de Biociências, Letras e Ciências Exatas, 2014.
000808947
000808947.pdf
33004153071P0
Autor
Agreli, Silvia Dória Felix [UNESP]
Resumen
The objective of this work is to study the existence of solutions to integrodifferential equations in Banach spaces. First, we will study the theory of Semigroups of bounded linear operators, analyzing their main properties and ending with the Hille-Yosida Theorem, which presents conditions for a linear operator be the infinitesimal generator of a strongly continuous semigroup. This theory will assist in the study of abstract differential equations and will serve as a motivation for the development of techniques for resolution to the integrodifferential equations, through the study of a family of linear operators called resolvent operators. We also have a version of the Hille-Yosida Theorem to resolvent operators O objetivo deste trabalho é estudar a existência de soluções para equações integrodiferenciais em espaço de Banach. Primeiramente, estudaremos a teoria de Semigrupos de operadores lineares limitados, analisando suas principais propriedades e finalizando com o Teorema de Hille-Yosida, que apresenta condições para que um operador linear seja o gerador infinitesimal de um semigrupo fortemente contínuo. Esta teoria auxiliará no estudo das equações diferenciais abstratas e servirá de motivação para o desenvolvimento de técnicas de resolução para as equações integrodiferenciais, mediante o estudo de uma família de operadores lineares chamados operadores resolventes. Apresentaremos também uma versão do Teorema de Hille-Yosida para os operadores resolventes Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)