Artigo
Inequalities for zeros of Jacobi polynomials via Sturm's theorem: Gautschi's conjectures
Registro en:
Numerical Algorithms. Dordrecht: Springer, v. 67, n. 3, p. 549-563, 2014.
1017-1398
10.1007/s11075-013-9807-7
WOS:000344598600005
Autor
Lun, Yen Chi
Rafaeli, Fernando Rodrigo [UNESP]
Resumen
Let x(n,k)((alpha,beta)), k = 1, ... , n, be the zeros of Jacobi polynomials P-n((alpha,beta)) (x) arranged in decreasing order on (-1, 1), where alpha, beta > -1, and theta((alpha,beta))(n,k) = arccos x(n,k)((alpha,beta)). Gautschi, in a series of recent papers, conjectured that the inequalitiesn theta((alpha,beta))(n,k) < (n + 1)theta((alpha,beta))(n+1,k)and(n + (alpha + beta + 3)/2)theta((alpha,beta))(n+1,k) < (n + (alpha + beta + 1)/2)theta((alpha,beta))(n,k),hold for all n >= 1, k = 1, ... , n, and certain values of the parameters alpha and beta. We establish these conjectures for large domains of the (alpha, beta)-plane by using a Sturmian approach. Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Univ Estadual Campinas UNICAMP, Sao Paulo, Brazil Univ Estadual Paulista UNESP, Sao Paulo, Brazil Univ Estadual Paulista UNESP, Sao Paulo, Brazil