Artigo
Zeros of classical orthogonal polynomials of a discrete variable
Registro en:
Mathematics of Computation. Providence: Amer Mathematical Soc, v. 82, n. 282, p. 1069-1095, 2013.
0025-5718
WOS:000326287500019
WOS000326287500019.pdf
Autor
Area, Ivan
Dimitrov, Dimitar K. [UNESP]
Godoy, Eduardo
Paschoa, Vanessa G.
Resumen
In this paper we obtain sharp bounds for the zeros of classical orthogonal polynomials of a discrete variable, considered as functions of a parameter, by using a theorem of A. Markov and the so-called Hellmann-Feynman theorem. Comparisons with previous results for zeros of Hahn, Meixner, Kravchuk and Charlier polynomials are also presented. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Ministerio de Ciencia e Innovacion of Spain European Community fund FEDER Univ Vigo, Dept Matemat Aplicada 2, EE Telecomunicac, Vigo 36310, Spain Univ Estadual Paulista, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil Univ Vigo, Dept Matemat Aplicada 2, EE Ind, Vigo 36310, Spain Univ Estadual Campinas UNICAMP, IMECC, Dept Matemat Aplicada, BR-13083859 Campinas, SP, Brazil Univ Estadual Paulista, Dept Ciencias Comp & Estat, BR-15054000 Sao Jose do Rio Preto, SP, Brazil CAPES: 160/08 CAPES: PHB2007-0078 CNPq: 305622/2009-9 FAPESP: 09/13832-9 Ministerio de Ciencia e Innovacion of SpainMTM2009-14668-C02-01
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
ZEROS OF CLASSICAL ORTHOGONAL POLYNOMIALS OF A DISCRETE VARIABLE
Area, I; Dimitrov, DK; Godoy, E; Paschoa, VG -
Zeros of classical orthogonal polynomials of a discrete variable
Area, Ivan; Dimitrov, Dimitar K.; Godoy, Eduardo; Paschoa, Vanessa G. -
Zeros of classical orthogonal polynomials of a discrete variable
Univ Vigo; Universidade Estadual Paulista (Unesp); Universidade Estadual de Campinas (UNICAMP) (Amer Mathematical Soc, 2013-04-01)In this paper we obtain sharp bounds for the zeros of classical orthogonal polynomials of a discrete variable, considered as functions of a parameter, by using a theorem of A. Markov and the so-called Hellmann-Feynman ...