Trabajo de grado - Pregrado
Desarrollo de un aplicativo web para el apoyo de identificación de fallas comunes en máquinas de anestesia en un hospital de alta complejidad
Fecha
2022Autor
Gracia Ramirez, David Leonardo
Resumen
El presente documento es el resultado de la investigación de fallas comunes en máquina de anestesia realizada en un hospital de cuarto nivel en la ciudad de Bogotá. Además, se encuentra la metodología que se realizó para el desarrollo del aplicativo web de identificación de fallas a partir de los datos de los mantenimientos correctivos recolectados en el hospital de los fabricantes Dräger y Datex Ohmeda por medio de dos métodos de Machine Learning. Obteniendo como resultado un aplicativo web de soporte para el personal de ingeniería biomédica para la identificación de fallas en máquinas de anestesia de marca Dräger mediante el método de Decision Tree Classifier con un 64% de certeza. Mientras que para Datex Ohmeda el método con mayor precisión fue Random Forest Classifier con el 74% de efectividad.