Pest control and deseases in aquaponics systems: Perspectives and opportunities for a clean production

dc.contributorGomez Ramirez, Edwin
dc.creatorArias Calderon, Miguel Angel
dc.date2023-05-23T19:24:46Z
dc.date2023-05-23T19:24:46Z
dc.date2022-07-08
dc.date.accessioned2023-09-06T18:05:14Z
dc.date.available2023-09-06T18:05:14Z
dc.identifierhttp://hdl.handle.net/10654/43801
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8694126
dc.descriptionEl crecimiento poblacional hace necesaria la búsqueda de nuevas alternativas para la producción de alimentos, y que a su vez sea sostenible para el ambiente. Los sistemas acuapónicos son una tecnología con el potencial de cumplir estas expectativas ya que produce plantas y peces en menor espacio que la agricultura convencional, además de reducir hasta un 90 % del consumo de agua comparada con una producción en suelo. Sin embargo, los sistemas acuapónicos lidian con la problemática de la pérdida de plantas y peces por infección de patógenos como Pythium, Pthytophtora, Vibrio, Aeromonas hydrophila entre muchos otros. En este artículo de revisión resumimos las principales enfermedades que afectan el sistema acuapónico y las técnicas de desinfección utilizadas centrándonos en técnicas de desinfección limpias como el control biológico o las sustancias biológicas.
dc.descriptionRESUMEN 1 1.0. INTRODUCCIÓN. 2 2.0. ENFERMEDADES DENTRO DE LOS CULTIVOS ACUAPÓNICOS. 5 2.1 Enfermedades en parte vegetal. 5 2.2 Enfermedades en peces. 7 2.2.1. Enfermedades Infecciosas 8 A.Enfermedades causadas por bacterias 8 B. Enfermedades causadas por virus 10 C. Enfermedades causadas por hongos. 11 3.0. CONTROL DE PLAGAS Y ENFERMEDADES DENTRO DE SISTEMAS ACUAPÓNICOS 12 3.1 Controles físicos 12 3.1.1. Filtración. 12 Filtración por membrana. 12 Filtración Lenta 15 3.1.2. Irradiación ultravioleta (UV). 17 3.1.3. Calor 19 3.1.4. Sonicación. 20 3.2 Controles químicos. 21 3.2.1. Ozono 21 3.2.2. Peróxido de hidrógeno 23 3.3. Sustancias Biológicas. 24 3.3 Control Biológico. 24 4.0 Perspectivas y Conclusiones 27 5.0. BIBLIOGRAFÍA
dc.descriptionPopulation growth makes it necessary to search for new alternatives for food production, which in turn is sustainable for the environment. Aquaponic systems are a technology with the potential to meet these expectations as they produce plants and fish in less space than conventional agriculture, in addition to reducing up to 90% of water consumption compared to soil production. However, aquaponic systems deal with the problem of loss of plants and fish due to infection by pathogens such as Pythium, Pthytophtora, Vibrio, Aeromonas hydrophila, among many others. In this review article we summarize the main diseases that affect the aquaponic system and the disinfection techniques used, focusing on clean disinfection techniques such as biological control or biological substances.
dc.descriptionPregrado
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherBiología Aplicada
dc.publisherFacultad de Ciencias Básicas
dc.publisherUniversidad Militar Nueva Granada
dc.relationAbramson, C. I., Wanderley, P. A., Wanderley, M. J., Mina, A. J., & de Souza, O. B. (2006). Effect of essential oil from citronella and alfazema on fennel aphids Hyadaphis foeniculi Passerini (Hemiptera: Aphididae) and its predator Cycloneda sanguinea L.(Coleoptera: Coccinelidae).
dc.relationAlbright, L. D., Langhans, R. W., de Villiers, D. S., Shelford, T. J., & Rutzke, C. J. (2007). Root disease treatment methods for commercial production of hydroponic spinach. Final Report for the New York State Energy Research and Development Authority.
dc.relationAlsanius, B. W., & Wohanka, W. (2019). Root Zone Microbiology of Soilless Cropping Systems. In Soilless Culture (pp. 149-194). Elsevier.
dc.relationArias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.-C., & García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123(4), 247–260. doi:10.1016/j.agee.2007.07.011
dc.relationArndt, R.E., Wagner, E.J., 2003. Filtering Myxobolus cerebralis Triactinomyxons from contaminated water using rapid sand filtration. Aquac. Eng. 29, 77–91. https://doi. org/10.1016/j.aquaeng.2003.05.001.
dc.relationAsche F, Hansen H, Tveteras R, Tveteras S (2010) The salmon disease crisis in Chile. Mar Res Eco. 24:405–411
dc.relationAskary, T. H., & Abd-Elgawad, M. M. (2021). Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions. Egyptian Journal of Biological Pest Control, 31(1), 1-10.
dc.relationAvendaño-Herrera, R., Magariños, B., Irgang, R., & Toranzo, A. E. (2006). Use of hydrogen peroxide against the fish pathogen Tenacibaculum maritimum and its effect on infected turbot (Scophthalmus maximus). Aquaculture, 257(1-4), 104-110.
dc.relationBarbosa GL, Gadelha FDA, Kublik N, Proctor A, Reichelm L, Weissinger E, Wohlleb GM, Halden RU (2015) Comparison of land water and energy requirements of lettuce grown using hydroponic vs. conventional agriculture. Int J Environ Res Pub Health 12(6):6879–6891. https://doi.org/ 10.3390/ijerph120606879
dc.relationBartelme, R. P., Oyserman, B. O., Blom, J. E., Sepulveda-Villet, O. J., & Newton, R. J. (2018). Stripping away the soil: Plant growth promoting microbiology opportunities in aquaponics. Frontiers in Microbiology, 9(JAN), 1–7. https://doi.org/10.3389/fmicb.2018.00008
dc.relationBartelme, R. P., Smith, M. C., Sepulveda-Villet, O. J., & Newton, R. J. (2019). Component Microenvironments and System Biogeography Structure Microorganism Distributions in Recirculating Aquaculture and Aquaponic Systems. MSphere, 4(4), 1–15. https://doi.org/10.1128/msphere.00143-19
dc.relationBates M, Stanghellini M. 1984. Root rot of hydroponically-grown spinach caused by Pythium aphanidermatum and P. dissotocum. Plant Dis. 68: 989-991.
dc.relationBeardsell, D., & Bankier, M. (1996). Monitoring and treatment of recycled water for nursery and floriculture production. Horticultural Research & Development Corporation.
dc.relationBergstrand, K., Khalil, S., Hultberg, M., Alsanius, B.W., 2011. Cross response of slowfilters to dual pathogen inoculation in closed hydroponic growing systems. OpenHortic. J. 4, 1–9. https://doi.org/10.2174/1874840601104010001
dc.relationBlack, K. D. (2001). Sustainability of aquaculture (pp. 199-212). Boca Raton: CRC Press.
dc.relationBreukers, A., van Asseldonk, M., Bremmer, J., & Beekman, V. (2012). Understanding growers' decisions to manage invasive pathogens at the farm level. Phytopathology, 102(6), 609-619.
dc.relationBricknell, I., 2017. Types of pathogens in fish, waterborne diseases. In: Fish Diseases: Prevention and Control Strategies. Elsevier, pp. 53–80. https://doi.org/10.1016/ B978-0-12-804564-0.00003-X
dc.relationCastillo, R. M. (2008). Educación y huella ecológica. Revista Electrónica" Actualidades Investigativas en Educación", 8(1), 1-28.
dc.relationCayanan, D.F., Dixon, M., Zheng, Y., Llewellyn, J., (2009b). Response of container-grown nursery plants to chlorine used to disinfest irrigation water. HortScience 44 (1), 164–167
dc.relationCayanan, D.F., Zhang, P., Liu, W., Dixon, M., Zheng, Y., 2009a. Efficacy of chlorine in controlling five common plant pathogens. HortScience 44 (1), 157–163
dc.relationChatterton, S., Sutton, J.C., Boland, G.J., 2004. Timing Pseudomonas chlororaphis applications to control Pythium aphanidermatum, Pythium dissotocum, and root rot in hydroponic peppers. Biol. Control 30, 360–373
dc.relationChinta, Y.D., Kano, K., Widiastuti, A., Fukahori, M., Kawasaki, S., Eguchi, Y., Misu, H., Odani, H., Zhou, S., Narisawa, K., Fujiwara, K., Shinohara, M., Sato, T., 2014. Effect of corn steep liquor on lettuce root rot (Fusarium oxysporum f. sp. lactucae) in hydroponic cultures. J. Sci. Food Agric. 94 (11), 2317–2323
dc.relationChoppakatla, V.K., (2009). Evaluation of SaniDate® 12.0 as a Bactericide, Fungicide and Algaecide for Irrigation for Irrigation Water Treatment. BioSafe Laboratory, Final Report 09-004
dc.relationCole, D. W., Cole, R., Gaydos, S. J., Gray, J., Hyland, G., Jacques, M. L., ... & Au, W. W. (2009). Aquaculture: Environmental, toxicological, and health issues. International journal of hygiene and environmental health, 212(4), 369-377.
dc.relationDa Silva Cerozi, B., & Fitzsimmons, K. (2016). Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Scientia Horticulturae, 211, 277-282.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectDisinfection methods
dc.subjectClean production
dc.subjectAquaponic systems
dc.subjectBiological control
dc.subjectCONTROL DE PLAGAS (POSTCOSECHA)
dc.subjectACUAPONIA
dc.subjectCULTIVO HIDROPONICO
dc.subjectMétodos de desinfección
dc.subjectProducción limpia
dc.subjectSistemas acuapónicos
dc.subjectControl biológico
dc.titleControl de plagas y enfermedades en cultivos acuapónicos: Perspectivas y oportunidades para una producción limpia
dc.titlePest control and deseases in aquaponics systems: Perspectives and opportunities for a clean production
dc.typeTesis/Trabajo de grado - Monografía - Pregrado
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageCampus UMNG


Este ítem pertenece a la siguiente institución