Study of the variation of gene expression in susceptible and resistant varieties of DIANTHUS CARYOPHYLLUS elicited with FUSARIUM OXYSPORUM F. SP DIANTHI under in vitro conditions

dc.contributorFilgueira, Juan Jose
dc.creatorLondoño Serna, Daniela
dc.date2023-06-23T17:20:59Z
dc.date2023-06-23T17:20:59Z
dc.date2022-12-19
dc.date.accessioned2023-09-06T17:54:07Z
dc.date.available2023-09-06T17:54:07Z
dc.identifierhttp://hdl.handle.net/10654/44721
dc.identifierinstname:Universidad Militar Nueva Granada
dc.identifierreponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifierrepourl:https://repository.unimilitar.edu.co
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8693370
dc.descriptionAl ser Colombia uno de los países con mayor producción de clavel a nivel mundial, es de gran importancia económica para el sector floricultor prevenir la enfermedad fusariosis, causa principal en las pérdidas del cultivo, a través de la obtención de variedades resistentes a esta enfermedad vascular provocado por Fusarium oxysporum f. sp. dianthi (FOX). Con el fin de realizar un acercamiento a la comprensión y conocimiento de la respuesta de variedades de clavel a la presencia de FOX, el objetivo principal de este trabajo de grado fue estudiar la expresión génica (ARNm) entre variedades susceptibles y resistentes de clavel durante la elicitación con dicho patógeno. Para esto, primero, se extrajo el ARNm de células des-diferenciadas de clavel, cultivadas in vitro, en condiciones elicitadas y no elicitadas, con tecnología de membrana de sílice. Segundo, se obtuvo un librería transcriptómica a través de la secuenciación RNA-seq al igual que la abundancia relativa de cada transcrito. Con esta información, se prosiguió en evaluar la variación de la respuesta génica en términos de ARNm producido por variedades susceptibles y resistentes de clavel a FOX. Finalmente, se detectó grupos de genes que podrían participar en el fenotipo de resistencia en variedades de clavel con la presencia a FOX.
dc.descriptionTABLA DE CONTENIDO RESUMEN 1. INTRODUCCIÓN 8 2. OBJETIVOS 9 2.1. Objetivo general 9 2.2. Objetivos específicos 10 3. REVISIÓN BIBLIOGRÁFICA Y ESTADO DEL ARTE 10 3.1. Importancia del clavel (Dianthus caryophyllus) 10 3.2. Fusarium oxysporum f. sp. dianthi, causante de la enfermedad fusariosis 11 3.3. Antecedentes fenotípicos y bases genéticas de la interacción planta-patógeno 12 3.4. Mejoramiento de clavel 13 3.5. Fitopatología Molecular 14 3.6. ARN-seq 17 4. MATERIALES Y MÉTODOS 18 4.1. Propagación de células desdiferenciadas 18 4.2. Aislamiento del patógeno 19 4.3. Obtención de cultivo monospórico y caracterización morfológica 19 4.4. Elicitación en “Cultivo Dual” 20 4.5. Extracción de ARN total, calidad y cuantificación 20 4.6. Secuenciación del transcriptoma, calidad, y ensamblaje de novo 21 4.7. Anotación Funcional 22 4.8. Comparación en los niveles de expresión en las variedades de clavel 22 5. RESULTADOS 23 5.1. Caracterización morfológica de Fusarium oxysporum 23 5.2. Ensayos preliminares y cultivo dual 25 5.3. Calidad de extracción 26 5.4. Secuenciación transcriptómica y análisis de calidad 29 5.5. Anotación Funcional 30 5.6. Comparación en los niveles de expresión 31 6. ANÁLISIS DE RESULTADOS Y DISCUSIÓN 37 6.1. Naturaleza fisiológica de las células desdiferenciadas 38 6.2. Transcritos asociados a los cloroplastos 38 6.3. Transcritos asociados al metabolismo de carbohidratos y respiración 38 6.4. Pared Celular 44 6.5. Transcritos asociados a la pared celular 45 6.6. Transcritos asociados al metabolismo fenilpropanoide 46 6.7. Transcritos asociados a proteínas multifuncionales 47 6.8. Transcritos asociados al control de compuestos reactivos 48 6.9. Transcritos asociados a los peroxisomas 50 6.10. Transcritos asociados a la vía proteolítica y muerte celular programada 50 6.11. Transcritos asociados a la defensa y estrés general 53 6.12. Transcritos asociados a la regulación transcripcional y post-transcripcion 53 6.13. Transcritos asociados a la traducción 54 6.14. Transcritos asociados al transporte 56 7. CONCLUSIONES 57 8. OBSERVACIONES Y RECOMENDACIONES 59 9. BIBLIOGRAFÍA 60 10. ANEXOS 78
dc.descriptionSince Colombia is one of the countries with the highest production of carnations worldwide, it is of great economic importance for the flower sector to prevent the disease fusariosis, the main cause of crop losses, by acquiring resistant varieties to this vascular disease caused by Fusarium oxysporum f. sp. Dianthi (FOX). In order to make an approach to the comprehension and knowledge of the response of carnation varieties to the presence of FOX, the main objective of this degree thesis was to study the gene expression (mRNA) between susceptible and resistant varieties of carnation during the elicitation with such pathogen. For this, first, mRNA was extracted from de-differentiated carnation cells, cultured in vitro, under elicitated and non-elicitated conditions with silica membrane technology. Second, a transcriptomic library was obtained through RNA-seq sequencing as well as the relative abundance of each transcript. With this information, the variation of the gene response in terms of mRNA produced by susceptible and resistant varieties of carnation to FOX, was analyzed. Finally, groups of genes that could participate in the resistance phenotype in carnation varieties with the presence of FOX were detected.
dc.descriptionPregrado
dc.formatapplicaction/pdf
dc.formatapplication/pdf
dc.languagespa
dc.publisherBiología Aplicada
dc.publisherFacultad de Ciencias Básicas
dc.publisherUniversidad Militar Nueva Granada
dc.relationAfzal, A. J., Wood, A. J., & Lightfoot, D. A. (2008). Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Molecular Plant-Microbe Interactions, 21(5), 507-517
dc.relationAgilent (2010). Bioanalyzer Interpretation: Bioanalyzer RNA Total Eukaryote 2100 Nano. Jabsom Genomics Core Facility. Agilent. 1-19pp.
dc.relationAlberts, B., Chaffey, N., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2003). The Plant Cell Wall. Molecular biology of the cell. 4th edn.
dc.relationAlmutairi, Z. M. (2022). In Silico Identification and Characterization of B12D Family Proteins in Viridiplantae. Evolutionary Bioinformatics, 18. DOI: https://doi.org/10.1177/11769343221106795
dc.relationAndersen, E. J., Ali, S., Byamukama, E., Yen, Y., & Nepal, M. P. (2018). Disease resistance mechanisms in plants. Genes, 9(7), 339.
dc.relationAnjum, A., Jaggi, S., Varghese, E., Lall, S., Bhowmik, A., & Rai, A. (2016). Identification of differentially expressed genes in rna-seq data of arabidopsis thaliana: A compound distribution approach. Journal of Computational Biology, 23(4), 239-247.
dc.relationArbeláez, G. (1993). La floricultura colombiana de exportación. Agronomía Colombiana. Volumen 10, Número 1, p. 5-11.
dc.relationArbeláez, G. y Calderón, O.L. (1991). Determinación de las razas fisiológicas de Fusarium oxysporum f. sp. dianthi del clavel en Colombia. Agronomía Colombiana. 8(2): 243–247. Asolcoflores. 2022. Informe de Logros 2021. Asociacion colombiana de Exportadores de Flores. pp 1-81.
dc.relationAyash, M., Abukhalaf, M., Thieme, D., Proksch, C., Heilmann, M., Schattat, M. H., & Hoehenwarter, W. (2021). LC–MS Based Draft Map of the Arabidopsis thaliana Nuclear Proteome and Protein Import in Pattern Triggered Immunity. Frontiers in Plant Science, 12. DOI: https://doi.org/10.3389/fpls.2021.744103
dc.relationBaayen, R. P., & Elgersma, D. M. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119–135. doi:10.1007/bf01976386
dc.relationBaayen, R. P. (1986). Regeneration of vascular tissues in relation to Fusarium wilt resistance of carnation. Netherlands Journal of Plant Pathology, 92(6), 273–285. doi:10.1007/bf01977590
dc.relationBaayen, R. P., Elgersma, D. M., Demmink, J. F., & Sparnaaij, L. D. (1988). Differences in pathogenesis observed among susceptible interactions of carnation with four races of Fusarium oxysporum f.sp. dianthi. Netherlands Journal of Plant Pathology, 94(2), 81–94. doi:10.1007/bf01998398
dc.relationBaayen, R. P., Ouellette, G. B. & Rioux. (1996). Compartmetalization of decay in carnations resistant to Fusarium oxysporum f. sp. Dianthi. Phytopathology. 86:1018-1031. Balakireva, A. V. & Zamyatnin Jr, A. A. (2018). Indispensable role of proteases in plant innate immunity. International journal of molecular sciences, 19(2), 629. DOI: 10.3390/ijms19020629
dc.relationBanci, L., Bertini, I., Ciofi-Baffoni, S., Jaiswal, D., Neri, S., Peruzzini, R., & Winkelmann, J. (2012). Structural characterization of CHCHD5 and CHCHD7: two atypical human twin CX9C proteins. Journal of structural biology, 180(1), 190-200. DOI: 10.1016/j.jsb.2012.07.007
dc.relationBen-Yephet, Y., Reuven, M., & Shtienberg, D. (1997). Complete Resistance by Carnation Cultivars to Fusarium Wilt Induced by Fusarium oxysporum f. sp. dianthi Race 2. Plant Disease, 81(7), 777–780. doi:10.1094/pdis.1997.81.7.777
dc.relationBent, A. F., & Mackey, D. (2007). Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol., 45, 399-436.
dc.relationBerkowitz, O., Jost, R., Pollmann, S., & Masle, J. (2008). Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. The Plant Cell, 20(12), 3430-3447. DOI: 10.1105/tpc.108.061010
dc.relationBerry, J. O., Yerramsetty, P., Zielinski, A. M., & Mure, C. M. (2013). Photosynthetic gene expression in higher plants. Photosynthesis research, 117(1), 91-120.
dc.relationBetancur, J. F. (2018). Ventaja comparativa del sector floricultor colombiano que promueva su presencia y le permite fortalecerse en el marco del TLC con Corea del Sur. Universitaria Agustiniana. Negocio Internacionales. Universitaria Agustiniana. Trabajo de Grado. Bogotá, D.C. pp 26-29.
dc.relationBhatia, S. (2015). Plant Tissue Culture. Bhatia, S., Sharma, K., Dahiya, R., & Tanmoy, B. Modern applications of plant biotechnology in pharmaceutical sciences. pp. 31-107. London, UK. Academic press.
dc.relationBoller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual review of plant biology, 60, 379-406.
dc.relationBravo, J., Aguilar-Henonin, L., Olmedo, G., & Guzman, P. (2005). Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana Poly (A)-binding proteins. Molecular genetics and genomics, 272(6), 651-665. DOI 10.1007/s00438-004-1090-9
dc.relationBuraglia, G. A. (2013). Análisis de SNPs como posible maracadores moleculares de resistencia a Fusarium oxysporum en una población de clavel (Dianthus caryophyllus L). Pontifica Universidad Javeriana. Tesis de Maestría en Ciencias Biológicas. Bogotá, D.C pp22-26.
dc.relationCallis, J., Browning, K. S. & Spremulli, L. (2015). Protein Synthesis, Folding and degradation. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 438-490. Oxford, UK. John Wiley & Sons.
dc.relationCárdenas, L. M. & Rodríguez, M. Y. (2011). Estudio de la agroindustria de las flores en Colombia y la creación de una empresa productora de flores. Universidad La Sabana. Trabajo de Grado. Bogotá, D.C. pp29-33.
dc.relationCarpita, N. C., Ralph, J. & McCann, M. C. (2015). The Cell Wall. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 45-107. Oxford, UK. John Wiley & Sons.
dc.relationChattopadhyay, T., Das, P. K., Roy, S., & Maiti, M. K. (2015). Proposed physiological mode of action of rice hemopexin fold protein OsHFP: linking heme-binding with plant cell death. Acta Physiologiae Plantarum, 37(5). DOI:10.1007/s11738-015-1842-7
dc.relationChen, Y. C., Kidd, B. N., Carvalhais, L. C., & Schenk, P. M. (2014). Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant signaling & behavior, 9(12), e977710, DOI: 10.4161/15592324.2014.977710
dc.relationChiocchetti, A., Bernardo, I., Daboussi, M. J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in carnation tissue by PCR amplification of transposon insertions. Phytopathology, 89(12), 1169-1175.
dc.relationChivasa, S., Tome, D. F., Hamilton, J. M., & Slabas, A. R. (2011). Proteomic analysis of extracellular ATP-regulated proteins identifies ATP synthase β-subunit as a novel plant cell death regulator. Molecular & Cellular Proteomics, 10(3). DOI: 10.1074/mcp.M110.003905
dc.relationChristie, W. W. (2022). Phosphonolipids. The Lipid Web. Web consultada el 1 de septiembre del 2022. Recuperada de: https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/lipids/complex/phophono/index.htm
dc.relationChristiernin, M., Ohlsson, A. B., Berglund, T., & Henriksson, G. (2005). Lignin isolated from primary walls of hybrid aspen cell cultures indicates significant differences in lignin structure between primary and secondary cell wall. Plant Physiology and Biochemistry, 43(8), 777-785. DOI: https://doi.org/10.1016/j.plaphy.2005.07.007
dc.relationChrost, B., Kolukisaoglu, U., Schulz, B., & Krupinska, K. (2007). An α-galactosidase with an essential function during leaf development. Planta, 225(2), 311-320. DOI: https://doi.org/10.1007/s00425-006-0350-9
dc.relationChung, M., Bruno, V.M., Rasko, D.A. et al. Best practices on the differential expression analysis of multi-species RNA-seq. Genome Biol 22, 121 (2021). https://doi.org/10.1186/s13059-021-02337-8
dc.relationClavijo, M. J. (2007). Caracterización molecular de la interacción clavel Dianthus caryophyllus - Fusarium oxysporum f. sp. Dianthi. Tesis Doctoral. Universidad Nacional de Colombia. pp 1-31.
dc.relationConlon, M. (2015). The History of the Colombian Flower Industry and Its Influence on the United States. USDA Foreign Agricultural Service. Gain Report. pp 1-9
dc.relationCooper GM. (2000). The Cell: A Molecular Approach. Translation of mRNA. 2nd edition. Sunderland (MA): Sinauer Associates. Consultado el 29 de agosto del 2022. Recuperado de: https://www.ncbi.nlm.nih.gov/books/NBK9849/
dc.relationCornish, K. & Blakeslee, J. (2021). Rubber Biosynthesis in Plants. The American Oil Chemist’s Society. Consultado el 29 de agosto del 2022. Recuperado de: https://lipidlibrary.aocs.org/chemistry/physics/plant-lipid/rubber-biosynthesis-in-plants
dc.relationCuestas, A. (2018). Análisis de las ventajas competitivas del sector floricultor de Colombia y Holanda en el periodo 2012-2017. Fundación Universidad de América. Título de especialización. Bogotá, D.C. pp 40-46.
dc.relationDai, N., Cohen, S., Portnoy, V., Tzuri, G., Harel-Beja, R., Pompan-Lotan, M., Carmi, N., Zhang, G., Diber, A., Pollock, S., Karchi, H., Yeselson, Y., Petreikov, M., Shen, S., Sahar, U., Hovav, R., Lewinsohn, E., Tadmor, Y., Granot, D., Ophir, R., Sherman, A., Fei, Z., Giovannoni, J., Burger, Y., Katzir, N & Schaffer, A. A. (2011). Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant molecular biology, 76(1), 1-18. DOI:10.1007/s11103-011-9757-1
dc.relationDahal, N., & Shrestha, R. K. (2018). Evaluation of Efficacy of Fungicides Against Fusarium oxysporum f. sp. lentis in Vitro at Lamjung, Nepal. Journal of the Institute of Agriculture and Animal Science, 35(1), 105-112.
dc.relationDe Benedetti, L., Burchi, G., Bruna, S., Mercuri, A., & Schiva, T. (2002). Use of molecular markers to improve cut flowers longevity in carnation. In XXVI International Horticultural Congress: Elegant Science in Floriculture 624. pp. 343-348.
dc.relationde Wit, P. J. 2007. How plants recognize pathogens and defend themselves. Cell molecular life science. 64(21):2726-32.
dc.relationDe Lamo, F. J., & Takken, F. L. (2020). Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Frontiers in Plant Science, 11, 37. DOI: https://doi.org/10.3389/fpls.2020.00037
dc.relationDíaz, N. (2012). Resistencia sistémica adquirida mediada por el ácido salicílico. Biotecnología en el Sector Agropecuario y Agroindustrial: BSAA, 10(2), 257-267.
dc.relationDodds, P. & Thrall, P. (2009). Recognition events and host-pathogen co-evolution in gene-for-gene resistance to flax rust. Functional Plant Biology. 36(5): 395–408. doi:10.1071/FP08320
dc.relationDubreuil, C., Jin, X., Barajas-López, J. de D., Hewitt, T. C., Tanz, S. K., Dobrenel, T., Schröder, W., Hanson, J., Pesquet, E., Grönlund, A., Small, I. & Strand, Å. (2017). Establishment of Photosynthesis through Chloroplast Development Is Controlled by Two Distinct Regulatory Phases. Plant Physiology, 176(2), 1199–1214. DOI:10.1104/pp.17.00435
dc.relationDutt, S., Parkash, J., Mehra, R., Sharma, N., Singh, B., Raigond, P., Chopra, S. & Singh, B. P. (2015). Translation initiation in plants: roles and implications beyond protein synthesis. Biologia plantarum, 59(3), 401-412. DOI: 10.1007/s10535-015-0517-y
dc.relationEgan, A. N., Schlueter, J., & Spooner, D. M. (2012). Applications of next‐generation sequencing in plant biology. American journal of botany, 99(2), 175-185. DOI: 10.3732/ajb.1200020
dc.relationEseverri, Á., Baysal, C., Medina, V., Capell, T., Christou, P., Rubio, L. M., & Caro, E. (2020). Transit Peptides From Photosynthesis-Related Proteins Mediate Import of a Marker Protein Into Different Plastid Types and Within Different Species. Frontiers in plant science, 11, 560701. DOI: https://doi.org/10.3389/fpls.2020.560701
dc.relationEvans, M. (2019). Oxidation Reactions of Thiols. Youtube channel. Consultado el 21 de septiembre del 2020. Recuperado de: https://www.youtube.com/watch?v=FSvf3koNvgA
dc.relationFehér, A. (2019). Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology?. Frontiers in plant science, 10, 536. DOI: https://doi.org/10.3389/fpls.2019.00536
dc.relationFilgueira, J. J. (2011). Experiencias en mejoramiento del clavel (Dianthus caryophyllus). Primera edición. Universidad Militar Nueva Granada. pp 1-100.
dc.relationFreeman, B. C., & Beattie, G. A. (2008). An overview of plant defenses against pathogens and herbivores. The Plant Health Instructor. DOI: 10.1094/PHI-I-2008-0226-01
dc.relationGlagoleva, A. Y., Shoeva, O. Y. & Khlestkina, E. K. (2020). Melanin Pigment in Plants: Current Knowledge and Future Perspectives. Frontiers in Plant Science. 11:770. doi: 10.3389/fpls.2020.00770
dc.relationGorshkova, D. S., & Pojidaeva, E. S. (2021). Members of the universal stress protein family are indirectly involved in gibberellin-dependent regulation of germination and post-germination growth. Russian Journal of Plant Physiology, 68(3), 451-462. DOI: https://doi.org/10.1134/S1021443721030055
dc.relationGracz-Bernaciak, J., Mazur, O., & Nawrot, R. (2021). Functional studies of plant latex as a rich source of bioactive compounds: Focus on proteins and alkaloids. International Journal of Molecular Sciences, 22(22), 12427. DOI: https://doi.org/10.3390/ijms222212427
dc.relationGrant, D., Britto, R., Soto, J. P. & Thiell, M. (2017). International Freight transport in South America: the case of Colombia. Beresford, A. K., & Pettit, S. International freight transport: Cases, structures and prospects. 244p.
dc.relationGroenewald, S. (2006). Biology, pathogenicity and diversity of Fusarium oxysporum f.sp. cubense. University of Pretoria. Tesis de Maestría en Ciencias. pp 5-8.
dc.relationGuo, Y., Ye, F., Sheng, Q., Clark, T., & Samuels, D. C. (2014). Three-stage quality control strategies for DNA re-sequencing data. Briefings in bioinformatics, 15(6), 879–889. DOI:10.1093/bib/bbt069
dc.relationGupta, A. K., & Kaur, N. (2005). Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences, 30(5), 761–776. DOI:10.1007/bf02703574
dc.relationHammond-Kosack, K. E. & Jones, J. D. G. (2015). Responses to Plant Pathogens. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 984-1049. Oxford, UK. John Wiley & Sons.
dc.relationHan, Y., Gao, S., Muegge, K., Zhang, W., & Zhou, B. (2015). Advanced Applications of RNA Sequencing and Challenges. Bioinformatics and biology insights, 9(Suppl 1), 29–46. DOI:10.4137/BBI.S28991
dc.relationHe, D., Zhang, H., & Yang, P. (2014). The mitochondrion-located protein OsB12D1 enhances flooding tolerance during seed germination and early seedling growth in rice. International journal of molecular sciences, 15(8), 13461-13481. DOI: 10.3390/ijms150813461
dc.relationHegde, K. T., Narayanaswamy, H., Veeraghanti, K. S., & Manu, T. G. (2017). Efficacy of bio-agents, botanicals and fungicides against Fusarium oxysporum f. sp. dianthi causing wilt of carnation. International Journal of Chemical Studies, 5(6), 139-142.
dc.relationHou, S., Liu, Z., Shen, H., & Wu, D. (2019). Damage-associated molecular pattern-triggered immunity in plants. Frontiers in plant science, 10, 646.
dc.relationJones, J. D., & Dangl, J. L. (2006). The plant immune system. nature, 444(7117), 323-329.
dc.relationHouston, K., Tucker, M. R., Chowdhury, J., Shirley, N., & Little, A. (2016). The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Frontiers in plant science, 7, 984.
dc.relationHu, WP., Chen, YC. & Chen, WY. (2020). Improve sample preparation process for miRNA isolation from the culture cells by using silica fiber membrane. Sci Rep 10, 21132. DOI: https://doi.org/10.1038/s41598-020-78202-8
dc.relationIkeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The plant cell, 25(9), 3159-3173.
dc.relationInvitrogen. (2010). Qubit 2.0 Fluorometer User Manual. Invitrogen.
dc.relationJain, D., & Khurana, J. P. (2018). Role of pathogenesis-related (PR) proteins in plant defense mechanism. In Molecular aspects of plant-pathogen interaction (pp. 265-281). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7371-7_12
dc.relationJanusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International journal of molecular sciences, 21(3), 966. DOI: 10.3390/ijms21030966
dc.relationJärvi, S., Isojärvi, J., Kangasjärvi, S., Salojärvi, J., Mamedov, F., Suorsa, M., & Aro, E. M. (2016). Photosystem II repair and plant immunity: Lessons learned from Arabidopsis mutant lacking the THYLAKOID LUMEN PROTEIN 18.3. Frontiers in plant science, 7, 405.
dc.relationJiménez-López, D., Bravo, J., & Guzmán, P. (2015). Evolutionary history exposes radical diversification among classes of interaction partners of the MLLE domain of plant poly (A)-binding proteins. BMC evolutionary biology, 15(1), 1-13. DOI: 10.1186/s12862-015-0475-1
dc.relationKao, Y. T., Gonzalez, K. L., & Bartel, B. (2018). Peroxisome function, biogenesis, and dynamics in plants. Plant Physiology, 176(1), 162-177. DOI: https://doi.org/10.1104/pp.17.01050
dc.relationKuang, J., Liu, J., Mei, J., Wang, C., Hu, H., Zhang, Y., ... & Yang, L. (2017). A class II small heat shock protein OsHsp18. 0 plays positive roles in both biotic and abiotic defense responses in rice. Scientific reports, 7(1), 1-14. https://doi.org/10.1038/s41598-017-11882-x
dc.relationKuczak, M., & Kurczyńska, E. (2020). Cell wall composition as a marker of the reprogramming of the cell fate on the example of a Daucus carota (L.) hypocotyl in which somatic embryogenesis was induced. International journal of molecular sciences, 21(21), 8126. DOI: https://doi.org/10.3390/ijms21218126
dc.relationKukurba, K. R., & Montgomery, S. B. (2015). RNA sequencing and analysis. Cold Spring Harbor Protocols, 2015(11). DOI: 10.1101/pdb.top084970
dc.relationKurowska, M. M. (2020). TIP aquaporins in plants: role in abiotic stress tolerance. Abiotic stress in plants, 423. DOI: 10.5772/intechopen.94165
dc.relationLabbé, G. (2009). Dynamics and inhibition of class II fructose 1, 6-bisphosphate aldolase. Doctorado en Química de la Universidad de Waterloo. Ontario, Canadá. pp. 1-18.
dc.relationLeggett, R. M., Ramirez-Gonzalez, R. H., Clavijo, B., Waite, D., & Davey, R. P. (2013). Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics. Frontiers in genetics, 4, 288.
dc.relationLegis. (2022). Analisis de la exportación de flores en Colombia. Legis. Consultado el 1 de octubre del 2022. Recuperado de: https://blog.legis.com.co/comercio-exterior/exportacion-de-flores-colombia
dc.relationLi, B., Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011). DOI: https://doi.org/10.1186/1471-2105-12-323
dc.relationLi, J. R., Liu, C. C., Sun, C. H., & Chen, Y. T. (2018). Plant stress RNA-seq Nexus: a stress-specific transcriptome database in plant cells. BMC genomics, 19(1), 1-8. DOI: https://doi.org/10.1186/s12864-018-5367-5
dc.relationLi, L., Wang, H., Gago, J., Cui, H., Qian, Z., Kodama, N., Ju, H., Tian, S., Shen, D., Chen, Y., Sun, F., Xia, Z., Ye, Q., Sun, W., Flexas, J. & Dong, H. (2015). Harpin Hpa1 interacts with aquaporin PIP1; 4 to promote the substrate transport and photosynthesis in Arabidopsis. Scientific Reports, 5(1), 1-17. DOI: https://doi.org/10.1038/srep17207
dc.relationLi, P., Yang, M., Chang, J., Wu, J., Zhong, F., Rahman, A., ... & Wu, S. (2018). Spatial expression and functional analysis of Casparian strip regulatory genes in endodermis reveals the conserved mechanism in tomato. Frontiers in plant science, 9, 832. DOI: https://doi.org/10.3389/fpls.2018.00832
dc.relationLi, Y., Song, J., Zhu, G., Hou, Z., Wang, L., Wu, X., Fang, Z., Liu, Y. & Gao, C. (2021). Genome-wide identification and expression analysis of ADP-ribosylation factors associated with biotic and abiotic stress in wheat (Triticum aestivum L.). PeerJ, 9, e10963. DOI: 10.7717/peerj.10963
dc.relationLi, X., Wei, W., Li, F., Zhang, L., Deng, X., Liu, Y., & Yang, S. (2019). The plastidial glyceraldehyde-3-phosphate dehydrogenase is critical for abiotic stress response in wheat. International journal of molecular sciences, 20(5), 1104. DOI: 10.3390/ijms20051104
dc.relationLombard, L., Sandoval-Denis, M., Lamprecht, S. C., & Crous, P. W. (2019). Epitypification of Fusarium oxysporum–clearing the taxonomic chaos. Persoonia: Molecular Phylogeny and Evolution of Fungi, 43, 1.
dc.relationLove, M. I., Anders, S., Kim, V., & Huber, W. (2015). RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000Research, 4.
dc.relationLyons, R., Stiller, J., Powell, J., Rusu, A., Manners, J. M., & Kazan, K. (2015). Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS one, 10(4), e0121902.
dc.relationMa, Y., Liu, M., Stiller, J., & Liu, C. (2019). A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC genomics, 20(1), 12. doi:10.1186/s12864-018-5357-7
dc.relationMacrogen. (2019). Dianthus caryophyllus Transcriptome Sequencing Report. Macrogen. pp1-20.
dc.relationMansoor, S., Ali Wani, O., Lone, J. K., Manhas, S., Kour, N., Alam, P., Ahmad, A. & Ahmad, P. (2022). Reactive Oxygen Species in plants: From source to sink. Antioxidants, 11(2), 225. DOI: 10.3390/antiox11020225
dc.relationMarino, D., Peeters, N., & Rivas, S. (2012). Ubiquitination during plant immune signaling. Plant physiology, 160(1), 15-27.
dc.relationMata-Pérez, C., & Spoel, S. H. (2019). Thioredoxin-mediated redox signalling in plant immunity. Plant science, 279, 27-33.
dc.relationMathur, M., Nair, A., & Kadoo, N. (2020). Plant-pathogen interactions: MicroRNA-mediated trans-kingdom gene regulation in fungi and their host plants. Genomics, 112(5), 3021–3035. doi:10.1016/j.ygeno.2020.05.021
dc.relationMcDonald, J.H. (2014). Handbook of Biological Statistics. Sparky House Publishing, Baltimore, Maryland. Tercera edicion.
dc.relationMcHale, L., Tan, X., Koehl, P., & Michelmore, R. W. (2006). Plant NBS-LRR proteins: adaptable guards. Genome biology, 7(4), 1-11.
dc.relationMen, X., Wang, F., Chen, G. Q., Zhang, H. B., & Xian, M. (2019). Biosynthesis of natural rubber: current state and perspectives. International Journal of Molecular Sciences, 20(1), 50. DOI: 10.3390/ijms20010050
dc.relationMeng, X., Song, T., Fan, H., Yu, Y., Cui, N., Zhao, J., & Meng, K. (2016a). A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress. Acta Physiologiae Plantarum, 38(11), 1-14. DOI: https://doi.org/10.1007/s11738-016-2266-8
dc.relationMeng, X., Yu, Y., Zhao, J., Cui, N., Song, T., Yang, Y., & Fan, H. (2018b). The two translationally controlled tumor protein genes, CsTCTP1 and CsTCTP2, are negative modulators in the Cucumis sativus defense response to Sphaerotheca fuliginea. Frontiers in plant science, 9, 544. DOI: https://doi.org/10.3389/fpls.2018.00544
dc.relationMeyer, T., Vigouroux, A., Aumont-Nicaise, M., Comte, G., Vial, L., Lavire, C., & Moréra, S. (2018). The plant defense signal galactinol is specifically used as a nutrient by the bacterial pathogen Agrobacterium fabrum. Journal of Biological Chemistry, 293(21), 7930-7941. DOI: 10.1074/jbc.RA118.001856
dc.relationMichielse, C. B., & Rep, M. (2009). Pathogen profile update: Fusarium oxysporum. Molecular plant pathology, 10(3), 311-324.
dc.relationMillar, A. H., Siedow, J. M. & Day, D. (2015). Respiration and Photorespiration. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 610-655. Oxford, UK. John Wiley & Sons.
dc.relationMinCIT. (2022). Gobierno Nacional celebra con los floricultores las cifras historicas de San Valentin. Consultado el 1 de octubre del 2022. Recuperado de: https://www.mincit.gov.co/prensa/noticias/comercio/cifras-historicas-exportacion-flores-san-valentin
dc.relationMinikel, E. V. (2013). Counts vs. FPKM in RNA-seq. CureFFi. Consultado el 26 de julio del 2021. Recuperado de: https://www.cureffi.org/2013/09/12/counts-vs-fpkms-in-rna-seq/
dc.relationMisas‐Villamil, J. C., van der Hoorn, R. A., & Doehlemann, G. (2016). Papain‐like cysteine proteases as hubs in plant immunity. New Phytologist, 212(4), 902-907. DOI: https://doi.org/10.1111/nph.14117
dc.relationMöller, R., McDonald, A. G., Walter, C., & Harris, P. J. (2003). Cell differentiation, secondary cell-wall formation and transformation of callus tissue of Pinus radiata D. Don. Planta, 217(5), 736-747. DOI: https://doi.org/10.1007/s00425-003-1053-0
dc.relationMostofa, M. G., Ghosh, A., Li, Z. G., Siddiqui, M. N., Fujita, M., & Tran, L. S. P. (2018). Methylglyoxal–a signaling molecule in plant abiotic stress responses. Free Radical Biology and Medicine, 122, 96-109. DOI: 10.1016/j.freeradbiomed.2018.03.009
dc.relationMueller, O., Lightfoot, S., & Schroeder, A. (2004). RNA integrity number (RIN)–standardization of RNA quality control. Agilent application note, publication, 1, 1-8.
dc.relationMunoz-Bertomeu, J., Cascales-Minana, B., Mulet, J. M., Baroja-Fernández, E., Pozueta-Romero, J., Kuhn, J. M., ... & Ros, R. (2009). Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiology, 151(2), 541-558. DOI: 10.1104/pp.109.143701
dc.relationNakkeeran, S., Vinodkumar, S., Dheepa, R., & Renukadevi, P. (2017). Diseases of Carnation and their management. Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore-641.
dc.relationNarayanan, B. C. (2008). Structure function diversity within the phosphoenolpyruvate mutase/isocitrate lyase superfamily as revealed by the enzymes oxaloacetate decarboxylase and 2, 3-dimethylmalate lyase (Doctoral dissertation, University of Maryland, College Park). pp. 1-140.
dc.relationNguyen, Q. M., Iswanto, A. B. B., Son, G. H., & Kim, S. H. (2021). Recent advances in effector-triggered immunity in plants: new pieces in the puzzle create a different paradigm. International Journal of Molecular Sciences, 22(9), 4709.
dc.relationNiño, J. (2016). La familia génica FTF determina el patrón de colonización y la virulencia en Fusarium oxysporum. Universidad de Salamanca. Tesis doctoral. pp 3-18
dc.relationNishad, R., Ahmed, T., Rahman, V. J., & Kareem, A. (2020). Modulation of plant defense system in response to microbial interactions. Frontiers in Microbiology, 11, 1298.
dc.relationNuruzzaman, M., Sharoni, A. M., & Kikuchi, S. (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in microbiology, 4, 248. DOI: 10.3389/fmicb.2013.00248
dc.relationNelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species: an illustrated manual for identification. The Penn State University Press.
dc.relationNowicka, B., & Kruk, J. (2010). Occurrence, biosynthesis and function of isoprenoid quinones. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797(9), 1587–1605. DOI: 10.1016/j.bbabio.2010.06.00
dc.relationOGTR (Office of the Gene Technology Regulator). (2006). The biology and ecology of Dianthus caryophyllus L.(carnation). Office of the Gene Technology Regulator. pp 1-31.
dc.relationOGTR (Office of the Gene Technology Regulator). (2015). The biology Dianthus caryophyllus L.(carnation). Office of the Gene Technology Regulator. pp 1-31.
dc.relationPalmer, M. & Prediger, E. (2016). Assessing RNA quality: mRNA integrity. Thermo Fisher Scientific Inc. Recuperado el 06 de Junio del 2018 de: https://www.thermofisher.com/co/en/home/references/ambion-tech-support/rna-isolation/tech-notes/assessing-rna-quality.html
dc.relationPaludan, S. R., Pradeu, T., Masters, S. L., & Mogensen, T. H. (2021). Constitutive immune mechanisms: mediators of host defence and immune regulation. Nature Reviews Immunology, 21(3), 137-150.
dc.relationPashkovskiy, P. P., Soshinkova, T. N., Korolkova, D. V., Kartashov, A. V., Zlobin, I. E., Lyubimov, V. Y., … Kuznetsov, V. V. (2017). The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells. Photosynthesis Research, 136(2), 199–214. DOI:10.1007/s11120-017-0459-7
dc.relationPaul, M. J., Gonzalez-Uriarte, A., Griffiths, C. A., & Hassani-Pak, K. (2018). The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiology, 177(1), 12-23. DOI: https://doi.org/10.1104/pp.17.01634
dc.relationPetit-Houdenot, Y. & Fudal, I. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance. Management. Frontiers in Plant Science. 8:1072. doi: 10.3389/fpls.2017.01072
dc.relationPonnu, J., Wahl, V., & Schmid, M. (2011). Trehalose-6-phosphate: connecting plant metabolism and development. Frontiers in Plant Science, 2, 70. DOI: https://doi.org/10.3389/fpls.2011.00070
dc.relationPopielarska-Konieczna, M., Sala, K., Abdullah, M., Tuleja, M., & Kurczyńska, E. (2020). Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta. Plant cell reports, 39(6), 779-798. DOI: https://doi.org/10.1007/s00299-020-02530-2
dc.relationPrados-Ligero, A. M., Basallote-Ureba, M. J., López-Herrera, C. J., & Melero-Vara, J. M. (2007). Evaluation of susceptibility of carnation cultivars to fusarium wilt and determination of Fusarium oxysporum fsp. dianthi races in southwest Spain. HortScience, 42(3), 596-599.
dc.relationQiao, Y., Xia, R., Zhai, J., Hou, Y., Feng, L., Zhai, Y., & Ma, W. (2021). Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. Annual Review of Phytopathology, 59.
dc.relationQiao, Y., Xia, R., Zhai, J., Hou, Y., Feng, L., Zhai, Y., & Ma, W. (2021). Small RNAs in Plant Immunity and Virulence of Filamentous Pathogens. Annual Review of Phytopathology, 59.
dc.relationSaidi, A., Jabalameli, Z., & Ghalamboran, M. (2018). Evaluation of genetic diversity of carnation cultivars using CDDP and DAMD markers and morphological traits. The Nucleus, 61(2), 129-135.
dc.relationSavage, H., Montoya, G., Svensson, C., Schwenn, J. D., & Sinning, I. (1997). Crystal structure of phosphoadenylyl sulphate (PAPS) reductase: a new family of adenine nucleotide α hydrolases. Structure, 5(7), 895-906. DOI: https://doi.org/10.1016/S0969-2126(97)00244-X
dc.relationScovel, G., Ovadis, M., Vainstein A. Reuven, M. & Yefet, B. (2001). Marker assisted selection for resistance to Fusarium oxysporum in the greenhouse carnation. Acta Horticulturae. DOI: 10.17660/ActaHortic.2001.552.16
dc.relationSengupta, S., Mukherjee, S., Basak, P., & Majumder, A. L. (2015). Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in plant science, 6, 656. DOI: https://doi.org/10.3389/fpls.2015.00656
dc.relationShamrai, S. N. (2014). Plant immune system: basal immunity. Cytology and genetics, 48(4), 258-271.
dc.relationShanmugabalaji, V., Grimm, B., & Kessler, F. (2020). Characterization of a plastoglobule-localized SOUL4 heme-binding protein in Arabidopsis thaliana. Frontiers in Plant Science, 2.
dc.relationSharma, S., & Raj, H. (2019). In vitro evaluation of botanicals and bio-pesticides against the Fusarium wilt of carnation (Fusarium oxysporum f. sp. dianthi). Journal of Pharmacognosy and Phytochemistry, 8(1), 1406-1408.
dc.relationSharmin, S., Azam, M. S., Islam, M. S., Sajib, A. A., Mahmood, N., Hasan, A. M., Ahmed, R., Sultana, K. & Khan, H. (2012). Xyloglucan endotransglycosylase/ hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection. Communicative & integrative biology, 5(6), 598-606. DOI: 10.4161/cib.21422
dc.relationShen, Z., Penton, C. R., Lv, N., Xue, C., Yuan, X., Ruan, Y., … Shen, Q. (2017). Banana Fusarium Wilt Disease Incidence Is Influenced by Shifts of Soil Microbial Communities Under Different Monoculture Spans. Microbial Ecology, 75(3), 739–750. doi:10.1007/s00248-017-1052-5
dc.relationShi, H., Liu, W., Yao, Y., Wei, Y., & Chan, Z. (2017). Alcohol dehydrogenase 1 (ADH1) confers both abiotic and biotic stress resistance in Arabidopsis. Plant Science, 262, 24–31. DOI: 10.1016/j.plantsci.2017.05.013
dc.relationShinozaki, K., Uemura, M., Bailey-Serres, J., Bray, E. A. & Weretilnyk, E. (2015). Response to Abiotic Stress. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 1051-1100. Oxford, UK. John Wiley & Sons.
dc.relationSingh, V. K., Singh, A. K., Singh, S., & Singh, B. D. (2015). Next-Generation Sequencing (NGS) Tools and Impact in Plant Breeding. Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools, 563–612. DOI:10.1007/978-3-319-22521-0_20
dc.relationSingla‐Pareek, S. L., Kaur, C., Kumar, B., Pareek, A., & Sopory, S. K. (2020). Reassessing plant glyoxalases: Large family and expanding functions. New Phytologist, 227(3), 714-721. DOI: https://doi.org/10.1111/nph.16576
dc.relationSoto-Sedano, J. C., Clavijo-Ortiz, M. J., & Filgueira-Duarte, J. J. (2012a). Phenotypic evaluation of the resistance in F1 carnation populations to vascular wilt caused by Fusarium oxysporum f. sp. dianthi. Agronomía Colombiana, 30(2), 172-178.
dc.relationSoto Sedano, J. C., & Filgueira Duarte, J. J. (2012b). Evaluation of the reproduction proficiency of carnation (Dianthus caryophyllus L.) hybrids and varieties as search of useful parentals for a breeding program. Revista Facultad De Ciencias Básicas, 8(2), 184-195.
dc.relationSoto, J., Pabon, F. & Filgueira, J. J. (2009). Relación entre el color de la flor del clavel (Dianthus caryophyllus) y la tolerancia a patógenos del género Fusarium. Revista Facultad de Ciencias Básicas. 5(1-2), 116-129.
dc.relationSoto, J., Clavijo, M. & Filgueira, J. J. (2012). Phenotypic evaluation of the resistance in F1 in Carnation populations to vascular wilt caused by Fusarium oxysporum f. sp. Dianthi. Agronomía Colombiana, 30(2), 172-178.
dc.relationSouza Jr, C. L. D. (2011). Cultivar development of allogamous crops. Crop Breeding and Applied Biotechnology, 11(SPE), 8-15.
dc.relationStaskawicz, B. J. (2001). Genetics of Plant-Pathogen Interactions Specifying Plant Disease Resistance. Plant Physiology. 125 (1) 73-76; DOI: 10.1104/pp.125.1.73
dc.relationStein, O., & Granot, D. (2018). Plant fructokinases: evolutionary, developmental, and metabolic aspects in sink tissues. Frontiers in Plant Science, 9, 339. DOI: https://doi.org/10.3389/fpls.2018.00339
dc.relationSu, T., Li, W., Wang, P., & Ma, C. (2019). Dynamics of peroxisome homeostasis and its role in stress response and signaling in plants. Frontiers in Plant Science, 10, 705. DOI: https://doi.org/10.3389/fpls.2019.00705
dc.relationTanase, K., Nishitani, C., Hirakawa, H., Isobe, S., Tabata, S. Ohmiya, A. & Onozaki, T. (2012). Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology. BMC Genomics 13(1):292. DOI:10.1186/1471-2164-13-292
dc.relationTittmann, K. (2014). Sweet siblings with different faces: The mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Bioorganic Chemistry, 57, 263–280. DOI: 10.1016/j.bioorg.2014.09.001
dc.relationThermo Fisher Scientific. 2020. Qubit Fluorometric Quantification. Thermo Fisher Scientific. Consultado 24 de febrero del 2021. Recuperado de: https://www.thermofisher.com/co/en/home/industrial/spectroscopy-elemental-isotope-analysis/molecular-spectroscopy/fluorometers/qubit.html?gclid=Cj0KCQjw9O6HBhCrARIsADx5qCSIpeO7HHQl-tI9dYax86wCKqL2i0UXgpgQHmg1xvqLMSGGpFo3fLwaAjw5EALw_wcB&ef_id=Cj0KCQjw9O6HBhCrARIsADx5qCSIpeO7HHQl-tI9dYax86wCKqL2i0UXgpgQHmg1xvqLMSGGpFo3fLwaAjw5EALw_wcB:G:s&s_kwcid=AL!3652!3!529745253588!e!!g!!qubit%20quantification&cid=bid_pca_aqb_r01_co_cp1359_pjt0000_bid00000_0se_gaw_bt_pur_con
dc.relationThomas, H., Ougham, E., Mur, L. & Jansson, S. (2015). Senescence and Cell Death. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 925-980. Oxford, UK. John Wiley & Sons.
dc.relationThomas, E. L. & Van der Hoorn, R. A. (2018). Ten prominent host proteases in plant-pathogen interactions. International journal of molecular sciences, 19(2), 639. DOI: https://doi.org/10.3390/ijms19020639
dc.relationThordal-Christensen, H. (2020). A holistic view on plant effector-triggered immunity presented as an iceberg model. Cellular and Molecular Life Sciences, 1-14
dc.relationToruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annual review of phytopathology, 54, 419-441.
dc.relationUlrich, K., & Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Biology and Medicine, 140, 14-27. DOI: 10.1016/j.freeradbiomed.2019.05.035
dc.relationVandenbroucke, K., Robbens, S., Vandepoele, K., Inzé, D., Van de Peer, Y., & Van Breusegem, F. (2008). Hydrogen peroxide–induced gene expression across kingdoms: a comparative analysis. Molecular Biology and Evolution, 25(3), 507-516. DOI: https://doi.org/10.1093/molbev/msm276
dc.relationVinson, C. C., Mota, A. P., Porto, B. N., Oliveira, T. N., Sampaio, I., Lacerda, A. L., ... & Brasileiro, A. (2020). Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses. Scientific reports, 10(1), 1-19. DOI: https://doi.org/10.1038/s41598-020-72191-4
dc.relationWang, H., Brandt, A. S. & Woodson, W. R. (1993). A flower senescence-related mRNA from carnation encodes a novel protein related to enzymes involved in phosphonate biosynthesis. Plant Molecular Biology, 22(4), 719–724. DOI: 10.1007/bf00047414
dc.relationWang, M., Toda, K., Block, A. & Maeda, H. A. (2019). TAT1 and TAT2 tyrosine aminotransferases have both distinct and shared functions in tyrosine metabolism and degradation in Arabidopsis thaliana. Journal of Biological Chemistry, 294(10), 3563-3576. DOI: https://doi.org/10.1074/jbc.RA118.006539
dc.relationWang, M., Ding, L., Gao, L., Li, Y., Shen, Q. & Guo, S. (2016). The interactions of aquaporins and mineral nutrients in higher plants. International Journal of Molecular Sciences, 17(8), 1229. DOI: https://doi.org/10.3390/ijms17081229
dc.relationWang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1), 57. doi: 10.1038/nrg2484
dc.relationWard, C. (2008). The American Carnation. Applewood Books. p. 17-30.
dc.relationWolińska, A., Podlewski, J., Słomczewski, A., Grządziel, J., Gałązka, A., & Kuźniar, A. (2021). Fungal indicators of sensitivity and resistance to long-term maize monoculture: a culture-independent approach. Frontiers in microbiology, 12. DOI: https://doi.org/10.3389/fmicb.2021.799378
dc.relationWolcan S.M., Malbrán, I., Mourelos, C. A., Sisterna, M. N.; González. M., Alippi, A., Nico, A. & Lori, G. (2018) Diseases of Carnation. Handbook of Florists' Crops Diseases. Handbook of Plant Disease Management. Springer, Cham. pp. 317-378
dc.relationXue, H., Tokutsu, R., Bergner, S. V., Scholz, M., Minagawa, J., & Hippler, M. (2015). PHOTOSYSTEM II SUBUNIT R Is Required for Efficient Binding of LIGHT-HARVESTING COMPLEX STRESS-RELATED PROTEIN3 to Photosystem II-Light-Harvesting Supercomplexes in Chlamydomonas reinhardtii. Plant Physiology, 167(4), 1566–1578. DOI:10.1104/pp.15.00094
dc.relationYagi, M., Onozaki, T., Taneya, M., Watanabe, H., Yoshimura, T., Yoshinari, T., Ochiai, Y. & Shibata, M. (2006). Construction of a Genetic Linkage Map for the Carnation by Using RAPD and SSR Markers and Mapping Quantitative Trait Loci (QTL) for Resistance to Bacterial Wilt Caused by Burkholderia caryophylli. J. Japan. Soc. Hort. Sci. 75 (2): 166–172.
dc.relationYagi, M., Yamamoto, T., Isobe, S., Hirakawa, H., Tabata, S., Tanase, K., Yamagushi, H. & Onozaki, T. (2013). Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC genomics, 14(1), 734.
dc.relationYagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, H., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamuro, M., Suzuki, T., Tanaka, Y., Sato, S., Shirasawa, K., Isobe, S., Miyamura, Y., Watanabe, A., Nakayama, S., Kishida, Y., Kohara, M. & Tabata, S. (2014). Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.). DNA Research. 21(3): 231–241.
dc.relationYang, I. S., & Kim, S. (2015). Analysis of whole transcriptome sequencing data: workflow and software. Genomics & informatics, 13(4), 119.
dc.relationYang, J., Ding, C., Xu, B., Chen, C., Narsai, R., Whelan, J., ... & Zhang, M. (2015). A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance. Scientific reports, 5(1), 1-11. DOI: 10.1038/srep14299
dc.relationYang, X., Zhang, L., Yang, Y., Schmid, M., & Wang, Y. (2021). miRNA Mediated Regulation and Interaction between Plants and Pathogens. International journal of molecular sciences, 22(6), 2913.
dc.relationYeo, U. D., Soh, W. Y., Tasaka, H., Sakurai, N., Kuraishi, S., & Takeda, K. (1995). Cell wall polysaccharides of callus and suspension-cultured cells from three cellulose-less mutants of barley (Hordeum vulgare L.). Plant and cell physiology, 36(5), 931-936. DOI: 10.1093/oxfordjournals.pcp.a078841
dc.relationYephet, B. & Shtienberg, D. (1997). Effects of the Host, the Pathogen and the Environment and Their Interactions, on Fusarium wilt in Carnation. Agricultural Research Organization. Phytoparasitica 25(3):207-216
dc.relationYu, S., Sun, Q., Wu, J., Zhao, P., Sun, Y., & Guo, Z. (2021). Genome-Wide Identification and Characterization of Short-Chain Dehydrogenase/Reductase (SDR) Gene Family in Medicago truncatula. International journal of molecular sciences, 22(17), 9498. Yuan, X., Wang, H., Cai, J., Li, D., & Song, F. (2019). NAC transcription factors in plant immunity. Phytopathology Research, 1(1), 1-13. DOI: https://doi.org/10.1186/s42483-018-0008-0
dc.relationYue, J., Zhu, C., Zhou, Y., Niu, X., Miao, M., Tang, X., ... & Liu, Y. (2018). Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium ‘Chuju’. Scientific reports, 8(1), 1-14. Zeeman, S. C. (2015). Carbohydrate Metabolism. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 567-610. Oxford, UK. John Wiley & Sons.
dc.relationZeeman, S. C. (2015). Carbohydrate Metabolism. Buchanan, B. B., Gruissem, W., & Jones, R. L. (Eds.). Biochemistry and molecular biology of plants. pp. 567-610. Oxford, UK. John Wiley & Sons.
dc.relationZhang, F., Xuan, L., Chen, H., Yu, C., Chong, X., Yin, Y., & Lu, X. (2021). Comparative Transcriptome Profiling of Resistant and Susceptible Taxodium Trees in Responding to he Infection by Pestalotiopsis maculans. Forests, 12(8), 1090.
dc.relationZhang, L., Chen, L., & Dong, H. (2019). Plant aquaporins in infection by and immunity against pathogens–a critical review. Frontiers in Plant Science, 10, 632. DOI: https://doi.org/10.3389/fpls.2019.00632
dc.relationZheng, M., Zhu, C., Yang, T., Qian, J., & Hsu, Y.-F. (2020). GSM2, a transaldolase, contributes to reactive oxygen species homeostasis in Arabidopsis. Plant Molecular Biology. DOI:10.1007/s11103-020-01022-x
dc.relationZhang, R., Zheng, F., Wei, S., Zhang, S., Li, G., Cao, P., & Zhao, S. (2019). Evolution of disease defense genes and their regulators in plants. International journal of molecular sciences, 20(2), 335.
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rightsAcceso abierto
dc.subjectCarnation
dc.subjectFusarium oxysporum
dc.subjectmRNA
dc.subjectRNA-seq
dc.subjectresistance
dc.subjectsusceptibility
dc.subjectDIANTHUS CARYOPHYLLUS
dc.subjectFUSARIUM OXYSPORUM
dc.subjectClavel
dc.subjectFusarium oxysporum
dc.subjectARNm
dc.subjectARN-seq
dc.subjectresistencia
dc.subjectsusceptibilidad
dc.titleEstudio de la variación de la expresión génica en variedades susceptibles y resistentes de DIANTHUS CARYOPHYLLUS elicitadas con FUSARIUM OXYSPORUM F. SP DIANTHI en condiciones in vitro
dc.titleStudy of the variation of gene expression in susceptible and resistant varieties of DIANTHUS CARYOPHYLLUS elicited with FUSARIUM OXYSPORUM F. SP DIANTHI under in vitro conditions
dc.typeTesis/Trabajo de grado - Monografía - Pregrado
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.typehttp://purl.org/coar/resource_type/c_7a1f
dc.typeinfo:eu-repo/semantics/acceptedVersion
dc.coverageCampus UMNG


Este ítem pertenece a la siguiente institución