A machine learning model to predict standardized tests in engineering programs in Colombia
Fecha
2023-08Registro en:
M. Soto-Acevedo, A. M. Abuchar-Curi, R. A. Zuluaga-Ortiz and E. J. Delahoz-Dominguez, "A machine learning model to predict standardized tests in engineering programs in Colombia," in IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, doi: 10.1109/RITA.2023.3301396.
10.1109/RITA.2023.3301396
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
Autor
Soto-Acevedo, Misorly
Abuchar-Curi, Alfredo M.
Zuluaga-Ortiz, Rohemi A.
Delahoz Domínguez, Enrique J.
Resumen
This research develops a model to predict the results of Colombia’s national standardized test for Engineering programs. The research made it possible to forecast each student’s results and thus make decisions on reinforcement strategies to improve student performance. Therefore, a Learning Analytics approach based on three stages was developed: first, analysis and debugging of the database; second, multivariate analysis; and third, machine learning techniques. The results show an association between the performance levels in the Highschool test and the university test results. In addition, the machine learning algorithm that adequately fits the research problem is the Generalized Linear Network Model. For the training stage, the results of the model in Accuracy, AUC, Sensitivity, and Specificity were 0.810, 0.820, 0.813, and 0.827, respectively; in the evaluation stage, the results of the model in Accuracy, AUC, Sensitivity, and Specificity were 0.820, 0.820, 0.827 and 0.813 respectively.