es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids

        Fecha
        2023-01-02
        Registro en:
        Atencia-De la Ossa, J., Orozco-Henao, C., & Marín-Quintero, J. (2023). Master-slave strategy based in artificial intelligence for the fault section estimation in active distribution networks and microgrids. International Journal of Electrical Power and Energy Systems, 148 doi:10.1016/j.ijepes.2022.108923.
        https://hdl.handle.net/20.500.12585/11834
        https://doi.org/10.1016/j.ijepes.2022.108923
        Universidad Tecnológica de Bolívar
        Repositorio Universidad Tecnológica de Bolívar
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/8682757
        Autor
        Atencia-de la Ossa, J
        Orozco-Henao, C.
        Marin-Quintero, J.
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Fault location plays an essential role in the integration of self-healing functionalities in active distribution networks and microgrids. However, the fault location methods formulation presents great challenges for these types of networks because the operating changes that occur them, such as changes in topology, DER connection/ disconnection and microgrids operating modes. Several fault location solutions have been proposed; nevertheless, these are strongly dependent on robust communication systems. This paper presents an artificial intelligence-based master–slave strategy for the estimation of the fault section in active distribution networks and microgrids using dispersed measurements. The strategy is composed by two stages. The master stage uses a genetic algorithm that determines the location and number of devices which maximize the faulted location e performance. The slave stage uses artificial neural networks to predict the fault section by using local voltage and current measurements trough an intelligent electronic device (IED). This approach is useful because it neglects the need of a robust communication systems and synchronization process between measurements. Here, each IED estimates the faulted section and then sends it through the single communication system to the distribution system operator control center. The presented method is validated on the modified IEEE 34-nodes test feeder where the accuracy of the strategy was 95%. The results obtained and its easy implementation indicate potential for real-life applications.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018