es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Classification of Cognitive Evoked Potentials for ADHD Detection in Children using Recurrence Plots and CNNs

        Fecha
        2021
        Registro en:
        Cabarcas-Mena, Y. P., Marrugo, A. G., & Contreras-Ortiz, S. H. (2021, September). Classification of cognitive evoked potentials for adhd detection in children using recurrence plots and cnns. In 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) (pp. 1-6). IEEE.
        https://hdl.handle.net/20.500.12585/12347
        10.1109/STSIVA53688.2021.9592021
        Universidad Tecnológica de Bolívar
        Repositorio Universidad Tecnológica de Bolívar
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/8682575
        Autor
        Cabarcas-Mena, Yina P.
        Marrugo, Andres G.
        Contreras-Ortiz, Sonia H.
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset condition characterized by difficulty paying attention and hyperactivity. The diagnosis of ADHD is made from psychological tests and electroencephalography (EEG). However, patient cooperation is necessary, which is a challenge with ADHD children. This work proposes a method for classification of ADHD and control cases from cognitive event-related potentials using recurrence plots and deep learning. A total of 44 children were included in this study (22 children with ADHD and 22 case controls). The signals were processed by a high-pass filter to eliminate DC components, wavelets transform with six decomposition levels, and synchronized averaging for each of the six channels (F3, AF3, F4, AF4, F7 and F8). Subsequently, the recurrence plot of each of the processed signals was obtained and used as inputs for two convolutional neural networks (CNN). The proposed models showed accuracies of 69.44% and 77,78%. © 2021 IEEE
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018