es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Colombian fruit and vegetables recognition using convolutional neural networks and transfer learning

        Fecha
        2020
        Registro en:
        Álvarez-Canchila, O. I., Arroyo-Pérez, D. E., Patiňo-Saucedo, A., González, H. R., & Patino-Vanegas, A. (2020, May). Colombian fruit and vegetables recognition using convolutional neural networks and transfer learning. In Journal of Physics: Conference Series (Vol. 1547, No. 1, p. 012020). IOP Publishing.
        https://hdl.handle.net/20.500.12585/12356
        10.1088/1742-6596/1547/1/012020
        Universidad Tecnológica de Bolívar
        Repositorio Universidad Tecnológica de Bolívar
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/8682500
        Autor
        Alvarez-Canchila, O.I.
        Arroyo-Pérez, D.E
        Patiňo-Saucedo, A.
        Rostro González, H.
        Patĩo-Vanegas, A.
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Automatic image recognition is a convenient option for labeling and categorizing fruits and vegetables in supermarkets. This paper proposes the design and implementation of an automatic classification system for Colombian fruits, by training a convolutional neural network. A database was created to train and test the system, which consisted of 4980 images, labeled in 22 classes, each corresponding to pictures of the same kind of fruit, trying to reproduce the variability of a real case scenario with occlusions, different positions, rotations, lightings, colors, etc., and the use of bags. On-training data augmentation was used to further increase the robustness of the model. Additionally, transfer learning was implemented by taking the parameters of a pretrained model used for fruit classification as the new initial parameters of the proposed convolutional network, achieving an increase of the classification accuracy compared with the same model when trained with random initial weights. The final classification accuracy of the network was 98.12% which matches the scores achieved on previous works that performed fruit classification on less challenging datasets. Considering top-3 classification we report an accuracy of 99.95%. © 2020 IOP Publishing Ltd. All rights reserved.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018