es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Corneal Endothelium Evaluation in Presence of Corneal Fuchs’ Dystrophy via Convolutional Neural Networks

        Fecha
        2023
        Registro en:
        J. Sierra, "Corneal Endothelium Evaluation in Presence of Corneal Fuchs’ Dystrophy via Convolutional Neural Networks", Master's thesis, Universidad Tecnológica de Bolívar, 2023.
        alma:57UTB_INST/bibs/99627132705731
        Universidad Tecnológica de Bolívar
        Repositorio UTB
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/8682483
        Autor
        Sierra Bravo, Juan Sebastián
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Specular microscopy is a non-contact technique used to image the corneal endothelium (CE). The CE is primarily made up of hexagonal cells, and an accurate assessment of its health can be performed by measuring the morphometric parameters. However, traditional methods often struggle in cases of diseases, such as cornea guttata. In this thesis, we investigated the use of deep learning methods to assess CE health without manual intervention, both in healthy and pathological subjects. We present the results of using a fully convolutional regression network to predict cell density maps from input microscopy images. In addition, we present two strategies for performing cell segmentation: classification and regression. The first approach uses a 5-layer UNet architecture to classify each pixel in an input specular microscopy image into one of three categories: the cell body, diseased region, or intercellular space. The second approach, a novel regression architecture based on UNet, aims to predict signed distance maps. We compared this approach with manual references and a comercial software. Finally, we summarize our conclusions and limitations, and outline future work. Our results show that deep-learning-based methods can be a promising tool for CE health assessment, providing a more effective and automated approach.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018