es | en | pt | fr
    • Presentación
    • Países
    • Instituciones
    • Participa
        JavaScript is disabled for your browser. Some features of this site may not work without it.
        Ver ítem 
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem
        •   Inicio
        • Colombia
        • Universidades
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        • Ver ítem

        Evaluation of the Effects of Anxiety on Electro-Physiological Evoked Responses to Emotion-Related Stimuli

        Fecha
        29/07/2023
        Registro en:
        Cabarcas-Mena, Yina P. (2023). Evaluation of the Effects of Anxiety on Electro-Physiological Evoked Responses to Emotion-Related Stimuli. Master Thesis. Universidad Tecnológica de Bolívar.
        https://hdl.handle.net/20.500.12585/12443
        alma:57UTB_INST/bibs/99636032605731
        Universidad Tecnológica de Bolívar
        Repositorio UTB
        https://repositorioslatinoamericanos.uchile.cl/handle/2250/8682416
        Autor
        Yina Paola Cabarcas Mena
        Institución
        • Universidad Tecnológica de Bolivar UTB (Colombia)
        Resumen
        Anxiety is a feeling of fear and uncertainty that can negatively affect social behavior. Understanding the impact of anxiety on social cognition is essential. This work presents an approach for the acquisition and processing of electroencephalography (EEG) signals using an emotional oddball paradigm to evaluate the effects of anxiety on electrophysiological evoked responses to emotion-related stimuli. Using two different methodologies, EEG signals were used to classify anxiety levels in 63 students. A visual emotional oddball paradigm to evoke event-related potentials (ERP) was used, and EEG signals were recorded using a commercial headset. Wavelet filtering with six levels of decomposition and reconstruction with thresholding was applied for signal processing and denoising. Subsequently, the averaged signal was obtained from 25 ERP realizations, focusing on channels O1, O2, P7, P8, F3, and F4. The first methodology used deep learning with recurrence plots of the processed signal as input for two convolutional neural networks (CNN). The second methodology used linear and nonlinear features and machine learning to classify two and three levels of anxiety. The best performance was obtained with the second method using Ramdon Forest, with an accuracy of 83.81% using a subset obtained from the wrapper method with forward selection for two anxiety levels.
        Materias

        Mostrar el registro completo del ítem


        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018
         

        EXPLORAR POR

        Instituciones
        Fecha2011 - 20202001 - 20101951 - 20001901 - 19501800 - 1900

        Explorar en Red de Repositorios

        Países >
        Tipo de documento >
        Fecha de publicación >
        Instituciones >

        Red de Repositorios Latinoamericanos
        + de 8.000.000 publicaciones disponibles
        500 instituciones participantes
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Ingreso Administradores
        Colecciones destacadas
        • Tesis latinoamericanas
        • Tesis argentinas
        • Tesis chilenas
        • Tesis peruanas
        Nuevas incorporaciones
        • Argentina
        • Brasil
        • Colombia
        • México
        Dirección de Servicios de Información y Bibliotecas (SISIB)
        Universidad de Chile
        Red de Repositorios Latinoamericanos | 2006-2018