dc.contributorGamarra, Daniel Fernando Tello
dc.creatorKich, Victor Augusto
dc.date.accessioned2023-03-21T13:06:27Z
dc.date.accessioned2023-09-04T19:41:40Z
dc.date.available2023-03-21T13:06:27Z
dc.date.available2023-09-04T19:41:40Z
dc.date.created2023-03-21T13:06:27Z
dc.date.issued2023-02-06
dc.identifierhttp://repositorio.ufsm.br/handle/1/28310
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8627350
dc.description.abstractThis paper presents a study of deep reinforcement learning techniques that uses parallel distributional actor-critic networks to navigate terrestrial mobile robots. The proposed approaches are developed taking into account only a couple of laser range findings, the relative position and angle of the mobile robot to the target as inputs to make a robot reach the desired goal in an environment. Was used a sim-to-real development structure, where the agents trained in a robot simulator are deployed in real scenarios to enhance the evaluation. The obtained results show that parallel distributional deep reinforcement learning algorithms, with continuous actions, are effective for the decision-make of a terrestrial robotic vehicle and outperform the classical behavior-based algorithm approach in terms of speed and navigation capability.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherUFSM
dc.publisherCentro de Tecnologia
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAcesso Aberto
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectParalelo Distribuído
dc.subjectAprendizado por Reforço Profundo
dc.subjectRobôs Móveis Terrestres
dc.subjectNavegação sem Mapa
dc.subjectParallel Distributional
dc.subjectDeep Reinforcement Learning
dc.subjectTerrestrial Mobile Robot
dc.subjectMapless Navigation
dc.titleAprendizado por reforço profundo distribucional paralelo para navegação sem mapa de robôs móveis terrestres
dc.typeTrabalho de Conclusão de Curso de Graduação


Este ítem pertenece a la siguiente institución