info:eu-repo/semantics/article
Spectral theory of the Atiyah-Patodi-Singer operator on compact flat manifolds
Registro en:
Miatello, Roberto Jorge; Podestá, Ricardo César; Spectral theory of the Atiyah-Patodi-Singer operator on compact flat manifolds; Springer; The Journal Of Geometric Analysis; 22; 4; 5-2011; 1027-1054
1050-6926
1559-002X
CONICET Digital
CONICET
Autor
Miatello, Roberto Jorge
Podestá, Ricardo César
Resumen
We study the spectral theory of the Dirac-type boundary operator D defined by Atiyah, Patodi, and Singer, acting on smooth even forms of a compact flat Riemannian manifold M. We give an explicit formula for the multiplicities of the eigenvalues of D in terms of values of characters of exterior representations of SO(n), where n = dim M. As a consequence, we give large families of D-isospectral flat manifolds that are non-homeomorphic to each other. Furthermore, we derive expressions for the eta series in terms of special values of Hurwitz zeta functions and, as a result, we obtain a simple explicit expression of the eta invariant. © Mathematica Josephina, Inc. 2011. Fil: Miatello, Roberto Jorge. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Podestá, Ricardo César. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina