info:eu-repo/semantics/article
On a question of Mendès France on normal numbers
Registro en:
Becher, Veronica Andrea; Madritsch, Manfred G.; On a question of Mendès France on normal numbers; Polish Academy of Sciences. Institute of Mathematics; Acta Arithmetica; 203; 3; 4-2022; 271-288
0065-1036
CONICET Digital
CONICET
Autor
Becher, Veronica Andrea
Madritsch, Manfred G.
Resumen
In 2008 or earlier, Michel Mendès France asked for an instance of a real number x such that both x and 1/x are simply normal to a given integer base b. We give a positive answer to this question by constructing a number x such that both x and its reciprocal 1/x are continued fraction normal as well as normal to all integer bases greater than or equal to 2. Moreover, x and 1/x are computable, the first n digits of their continued fraction expansion can be obtained in O(n4) mathematical operations. Fil: Becher, Veronica Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Madritsch, Manfred G.. Centre National de la Recherche Scientifique; Francia