info:eu-repo/semantics/article
Improvements on Sawyer type estimates for generalized maximal functions
Registro en:
Berra, Fabio Martín; Carena, Marilina; Pradolini, Gladis Guadalupe; Improvements on Sawyer type estimates for generalized maximal functions; Wiley VCH Verlag; Mathematische Nachrichten; 293; 10; 10-2020; 1911-1930
0025-584X
CONICET Digital
CONICET
Autor
Berra, Fabio Martín
Carena, Marilina
Pradolini, Gladis Guadalupe
Resumen
In this paper we prove mixed inequalities for the maximal operator (Formula presented.), for general Young functions Φ with certain additional properties, improving and generalizing some previous estimates for the Hardy–Littlewood maximal operator proved by E. Sawyer. We show that given (Formula presented.), if (Formula presented.) are weights belonging to the A1-Muckenhoupt class and Φ is a Young function as above, then the inequality (Formula presented.) holds for every positive t. A motivation for studying these type of estimates is to find an alternative way to prove the boundedness properties of (Formula presented.). Moreover, it is well-known that for the particular case (Formula presented.) with (Formula presented.) these maximal functions control, in some sense, certain operators in harmonic analysis. Fil: Berra, Fabio Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Carena, Marilina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Pradolini, Gladis Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina