Transition disks: four candidates for ongoing giant planet formation in Ophiuchus
Registro en:
Orellana, Mariana D., Cieza, Lucas A., Schreiber, Matthias R., Merín, B., Brown, J. & et al. (2011). Transition disks: four candidates for ongoing giant planet formation in Ophiuchus. EDP Sciences; Astronomy and Astrophysics; 539; A41; 1-4
0004-6361
Autor
Orellana, Mariana D.
Cieza, Lucas A.
Schreiber, Matthias R.
Merín, B.
Brow, J.
Pellizza González, Leonardo J.
Romero, Gisela A.
Institución
Resumen
Fil: Orellana, Mariana D. Universidad Nacional de Río Negro; Argentina Fil: Orellana, Mariana D. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Orellana, Mariana D. Universidad de Valparaiso; Chile Fil: Cieza, Lucas A. University of Hawaii at Manoa; Estados Unidos Fil: Schreiber, Matthias R. Universidad de Valparaiso; Chile Fil: Merín, B. European Space Astronomy Centre; Chile Fil: Brown, J. Harvard-Smithsonian Center for Astrophysics; Estados Unidos Fil: Pellizza González, Leonardo J. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina Fil: Pellizza González, Leonardo J. Instituto de Astronomía y Física del Espacio; Argentina Fil: Pellizza González, Leonardo J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Fil: Romero, Gisela A. Universidad de Valparaiso; Chile true Among the large set of Spitzer-selected transitional disks that we have examined in the Ophiuchus molecular, four disks have been identified as (giant) planet-forming candidates based on the morphology of their spectral energy distributions (SEDs), their apparent lack of stellar companions, and evidence of accretion. Here we characterize the structures of these disks modeling their optical, infrared, and (sub)millimeter SEDs. We use the Monte Carlo radiative transfer package RADMC to construct a parametric model of the dust distribution in a flared disk with an inner cavity and calculate the temperature structure that is consistent with the density profile, when the disk is in thermal equilibrium with the irradiating star. For each object, we conducted a Bayesian exploration of the parameter space generating Monte Carlo Markov chains (MCMC) that allow the identification of the best-fit model parameters and to constrain their range of statistical confidence. Our calculations imply that evacuated cavities with radii ∼2-8 AU are present that appear to have been carved by embedded giant planets. We found parameter values that are consistent with those previously given in the literature, indicating that there has been a mild degree of grain growth and dust settling, which deserves to be investigated with further modeling and follow-up observations. Resolved images with (sub)millimeter interferometers would be required to break some of the degeneracies of the models and more tightly constrain the physical properties of these fascinating disks. © 2012 ESO.