Seismoelectric signals produced by mesoscopic heterogeneities: Spectroscopic analysis of fractured media
Registro en:
Rosas-Carbajal M., Jougnot D., Rubino J.G., Monachesi, L.B., Linde N. and Holliger K. (2018). Seismoelectric signals produced by mesoscopic heterogeneities:Spectroscopic analysis of fractured media. Seismoelectric Exploration (Books of American Geophysical Union (AGU Books).
Autor
Rosas Carbajal, Marina
Jougnot, Damien
Rubino, Germán
Monachesi, Leonardo Bruno
Linde, Niklas
Holliger, Klaus
Institución
Resumen
Fil: Rosas Carbajal, Marina. Institut de Physique du Globe de Paris, Sorbonne Paris Cite. Paris, Francia. Fil: Jougnot, Damien. Sorbonne Universites, UPMC Université Paris 06. Paris, Francia. Fil: Rubino, Germán. CONICET, Centro Atomico Bariloche - Comisión Nacional de Energía Atómica. Bariloche, Argentina. Fil: Monachesi, Leonardo. Universidad Nacional de Río Negro. Instituto de Investigación en Paleobiología y Geología. Río Negro, Argentina. Fil: Linde, Niklas. Applied and Environmental Geophysics Group, Institute of Earth Sciences, University of Lausanne, Suiza. Fil: Holliger, Klaus. Applied and Environmental Geophysics Group, Institute of Earth Sciences, University of Lausanne, Suiza. In fluid-saturated porous rocks, the presence of mesoscopic heterogeneities such as, forexample, fractures, can produce measurable seismoelectric signals. The conversion of mechan-ical energy into electromagnetic energy is related to wave-induced fluid flow (WIFF) betweenthe heterogeneities and the embedding background. This physical mechanism is a well-knowncause of seismic attenuation, which exhibits a strong frequency dependence related to rock phys-ical and structural properties. Consequently, seismoelectric signals arising from WIFF are alsoexpected to depend on various material properties, such as the background permeability andfracture characteristics. We present analytical and numerical approaches to study the effectsof mesoscopic heterogeneities on seismoelectric signals. We develop an energy-based approach to quantify the total energy converted to seismoelectric signals at the sample scale. In partic-ular, we apply our theoretical framework to fractured rock sample models and study the spec-tral signature of the resulting seismoelectric signals. This study highlights the influence of themechanical and hydraulic properties, as well as the geometrical characteristics, such as degreeof fracture connectivity, of the probed medium on the resulting seismoelectric signal.