Homología persistente y curvatura discreta en el análisis topológico de datos
Registro en:
instname:Pontificia Universidad Javeriana
reponame:Repositorio Institucional - Pontificia Universidad Javeriana
Autor
Duque Giraldo, Fabio Alejandro
Institución
Resumen
En este trabajo se expone la teoría básica necesaria para aplicar la homología persistente para el análisis topológico de datos, utilizando el algoritmo de Vietoris-Rips. La presentación incluye las herramientas necesarias de homología simplicial y la construcción de los complejos simpliciales requeridos para el uso de este algoritmo. Adicionalmente, se hace una breve introducción a una noción de curvatura discreta que se conoce como la curvatura de Ricci-Forman y que recientemente se ha venido aplicando al estudio de redes complejas. Utilizando los valores de esta curvatura discreta como pesos, se presenta un método para hacer homologia persistente sobre grafos que permite estudiar la estructura topológica de un grafo o una red.
Como aplicación de estos métodos, se estudian redes de corrupción política en Brasil y España, y se comparan con un modelo aleatorio propuesto en la literatura para simular este tipo de estructuras. Usando inicialmente técnicas clásicas del análisis de redes, se observa que el modelo reproduce algunas de las propiedades estadísticas más sobresalientes de estas redes. Por último, se usa la homología persistente junto con la curvatura discreta para comparar topológicamente este modelo aleatorio con las redes empíricas en cuestión y se muestra que el modelo no logra capturar completamente la información topológica de estas redes de corrupción.
Se concluye el documento con algunas observaciones, incluyendo posibles rutas para continuar el trabajo y mejorar el modelo aleatorio estudiado.