info:eu-repo/semantics/article
Self-organization and pattern formation in coupled Lorenz oscillators under a discrete symmetric transformation
Registro en:
Carrillo Loaiza, A., & Rodríguez Rey, B. A. (2011). Self-organization and pattern formation in coupled Lorenz oscillators under a discrete symmetric transformation. Journal of Physics: Conference Series. 285(012033), 1-6. DOI:10.1088/1742-6596/285/1/012033
1742-6596
10.1088/1742-6596/285/1/012033
1742-6588
Autor
Carrillo Loaiza, Alejandro
Rodríguez Rey, Boris Ánghelo
Institución
Resumen
ABSTRACT: We present a spatial array of Lorenz oscillators, with each cell lattice in the chaotic regime. This system shows spatial ordering due to self-organization of chaos synchronization after a bifurcation. It is shown that an array of such oscillators transformed under a discrete symmetry group, does not maintain the global dynamics, although each transformed unit cell is locally identical to its precursor. Alternatively, it is shown that in a 1-dimensional lattice, the coupling destroy the chaotic behavior but there are similar global behaviors between both coupled arrays, suggesting that is the local equivariance which controls the dynamics.