Caracterización y diferenciación de cafés, a partir de espectroscopía infrarroja

dc.creatorBarrera B., Óscar M.
dc.creatorGutiérrez G., Nelson
dc.creatorOrozco-Blanco, Dayana
dc.date2019-02-21
dc.date.accessioned2023-08-28T15:13:56Z
dc.date.available2023-08-28T15:13:56Z
dc.identifierhttps://revistas.udca.edu.co/index.php/ruadc/article/view/1158
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8442996
dc.descriptionCoffee is the second most consumed beverage in the world after water, the Colombian coffee production contributes with 9% of total world production and Colombian coffee is recognized by quality and mild coffee. Today, there is not enough evidence on the influence of altitude in sensory quality and coffee chemical composition. In this sense, we sought to characterize and differentiate coffees by infrared spectrum analysis (FTIR) and sensory evaluation. 62 specialty coffees samples were harvested at different altitudes, obtained in two harvest periods. The spectra obtained allowed finding differentiation in the peaks associated with chlorogenic acids (1600-1650cm-1) between green and roasted coffee beans, although no differences were observed in the peaks according to the harvest period; by itself.  The sensory evaluation, according to the SCA methodology, 2015 did not generate statistically significant differences between harvest periods and evaluated varieties. When jointly considering the sensory analysis and the infrared spectrum analysis, there were statistically significant differences between harvest periods, attributable to the caffeine content and the total cup score. The results found show that there is no correlation between the height of the coffee crop and the final quality of the beverage.en-US
dc.descriptionEl café es la segunda bebida más consumida en el mundo después del agua, en el que Colombia contribuye con el 9% de la producción, destacándose la calidad del café del departamento del Huila (cafés de altura); sin embargo, no hay suficiente evidencia sobre la incidencia de la altura en la calidad sensorial y composición química. En ese sentido, se buscó caracterizar y diferenciar cafés, mediante el análisis del espectro infrarrojo (FTIR) y evaluación sensorial. 62 muestras de cafés especiales fueron caracterizados, cosechados en diferentes altitudes, obtenidas en dos periodos de cosecha. Los espectros obtenidos permitieron encontrar diferenciación en los picos asociados a ácidos clorogénicos (1600-1650cm-1), entre grano verde y tostado, aunque no se observaron diferencias en los picos, según el periodo de cosecha, por sí solos. La evaluación sensorial, según la metodología SCA, 2015, no generaron diferencias estadísticamente significativas entre periodos de cosecha y variedades evaluadas. Al considerar conjuntamente el análisis sensorial y el análisis del espectro infrarrojo, se presentaron diferencias estadísticamente significativas entre periodos de cosecha, atribuibles al contenido de cafeína y al puntaje total en taza. Los resultados encontrados muestran que no existe correlación entre la altura del cultivo de café y la calidad final de la bebida.es-ES
dc.formatapplication/xml
dc.formatapplication/pdf
dc.languagespa
dc.publisherUniversidad de Ciencias Aplicadas y Ambientales U.D.C.Aes-ES
dc.relationhttps://revistas.udca.edu.co/index.php/ruadc/article/view/1158/1539
dc.relationhttps://revistas.udca.edu.co/index.php/ruadc/article/view/1158/1668
dc.relation/*ref*/ALVES, R.C.; CASAL, S.; OLIVEIRA, M. 2010. Tocopherols in coffee brews: Influence of coffee species, roast degree and brewing procedure. J. Food Compos. Anal (United States). (23):802-808. https://doi.org/10.1016/j.jfca.2010.02.009
dc.relation/*ref*/CEBI, N.; TAHSIN, Y.M.; SAGDIC, O. 2017. A rapid ATR-FTIR spectroscopic method for detection of sibutramine adulteration in tea and coffee based on hierarchical cluster and principal component analyses. Food Chem (England). 229(15):517-526. https://doi.org/10.1016/j.foodchem.2017.02.072
dc.relation/*ref*/CHEONG, M.W.; TONG, K.H.; MING O., J.J.; LIU S., Q.; CURRAN, P.; YU, B. 2013. Volatile composition and antioxidant capacity of Arabica coffee, Food Res. Int. (Canada) 51(1):388-396. http://dx.doi.org/10.1016/j.foodres.2012.12.058
dc.relation/*ref*/CHENG, B.; FURTADO, A.; SMYTH, H.E.; HENRY, R.J. 2016. Influence of genotype and environment on coffee quality, Trends Food Sci Technol (England). 57:20-30. http://dx.doi.org/10.1016/j.tifs.2016.09.003
dc.relation/*ref*/CRAIG, A.P.; FRANCA, A.S.; OLIVEIRA, L.S. 2012. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chem. 132(3):1368-1374. http://dx.doi.org/10.1016/j.foodchem.2011.11.121
dc.relation/*ref*/DÁVILA, L. 2018. Así fue la cosecha cafetera del Huila en 2017. Disponible en internet en: http://www.lanacion.com.co/2018/01/05/asi-fue-la-cosecha-cafetera-del-huila-2017/ [con acceso el 27/07/2018]
dc.relation/*ref*/DEBELA, B.A.; VOS, J. 2017. Tree management and envionmental conditions affect coffee (Coffea arabica L.) bean quality. NJAS-WAGEN J LIFE SC. (Netherlands) 83:39-46. https://doi.org/10.1016/j.njas.2017.09.002
dc.relation/*ref*/DI BELLA, G.; POTORTÌ, A.G.; LO TURCO, V.; SAITTA, M.; DUGO, G. 2014. Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots, Food Control (England) 41:185-192
dc.relation/*ref*/DE LIMA, A.E.; GUIMARAES, M.A.N.; RODRIGUES, C.G.; BOTELHO, C.E.; DE MELO, C.E.; CARDOSO, D. 2015. Desempenho agronômico de populações de cafeeiros do grupo ‘Bourbon’. Coffee Science. (Brazil) 11: 22-32. http://dx.doi.org/10.25186/cs.v11i1.957
dc.relation/*ref*/FARAH, A.; PAULIS, T.; TRUGO, C.L.; MARTIN, P.R. 2005. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem. (United States). 53(5):1505–1513. https://doi.org/10.1021/jf048701t
dc.relation/*ref*/FARAH, A. 2012. Coffee Constituents, in Coffee: Emerging Health Effects and Disease Prevention (ed Y.-F. Chu), Wiley-Blackwell, Oxford, UK. https://doi.org/10.1002/9781119949893.ch2
dc.relation/*ref*/FERNANDES, B. D.; MADUREIRA, F. A. L.; SUN, D. W.; NIXDORF, S. L.; YOKO H. 2014. Application of ingrared spectral techniques on quality and compositional attributes of coffee: an overview. Food Res Int. (United States). 61:23-32. https://doi.org/10.1016/j.foodres.2014.01.005
dc.relation/*ref*/GOTTELAND, M.; DE PABLO, V.S. 2007. Algunas verdades sobre el café. Rev. chilena de nutrición. 34(2):105-115. http://dx.doi.org/10.4067/S0717-75182007000200002
dc.relation/*ref*/HENAO, J.D.; GUTIÉRREZ, G.N.; MEDINA R., D.R. 2017. Buenas prácticas y procedimientos para el acopio de cafés especiales. Editorial Universidad Surcolombiana. 80p
dc.relation/*ref*/MELO, W.L.B.A. 2004. Importância da informação sobre do grau de torra do café e sua influência nas características organolépticas da bebida. São Carlos: Empresa Brasileira de Pesquisa Agropecuária (Embrapa). Comunicado Técnico 58. 4p
dc.relation/*ref*/ORGANIZACIÓN INTERNACIONAL DE CAFÉ, OIC. 2016. Informe del mercado del café junio 2016. El consumo de café aumenta y los precios en el mercado son los más altos en 14 meses. Disponible desde internet en: http://www.ico.org/documents/cy2015-16/cmr-0616-c.pdf [Con acceso el 9/04/2018]
dc.relation/*ref*/OESTREICH-JANZEN, S. 2013. Chemistry of Coffee. In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Waltham, MA: Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.02786-4
dc.relation/*ref*/OROZCO, C.N.; GUACAS, S.A.; BACCA, T. 2011. Caracterización de fincas cafeteras por calidad de la bebida y algunas condiciones ambientales y agronómicas. Rev. Ciencias Agrícolas. 28(2):9-17.
dc.relation/*ref*/REIS, N.; FRANCA, A.S.; OLIVEIRA, L.S. 2013. Discrimination between roasted coffee, roasted corn and coffee husks by Diffuse Reflectance Infrared Fourier Transform Spectroscopy. Food Sci. Technol. (Brasil). 50(2):715-722. https://doi.org/10.1016/j.lwt.2012.07.016
dc.relation/*ref*/RIBEIRO JULIANO, S.; SALVA TEREZINHA, J.; FERREIRA MÁRCIA, M.C. 2010. Chemometric studies for quality control of processed brazilian coffees using drifts. J. Food Quality. 33:212-227. https://doi.org/10.1111/j.1745-4557.2010.00309.x
dc.relation/*ref*/RODRIGUEZ-SAONA, L.; ALLENDORF, M.E. 2011. Use of FTIR for rapid authentication and detection of adulteration of food. Annu. Rev Food Sci Technol (United States). 2:467-483. https://doi.org/10.1146/annurev-food-022510-133750
dc.relation/*ref*/SANTOS, J.R.; VIEGAS, O.; PÁSCOA R., N.M.J.; FERREIRA I., M.P.L.V.O.; RANGEL A., O.S.S.; LOPES, J.A. 2016. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chem. 208:103-110. https://doi.org/10.1016/j.foodchem.2016.03.114
dc.relation/*ref*/SPECIALTY COFFEE ASSOCIATION OF AMERICA, SCAA. 2015. SCAA Protocols: cupping specialty coffee. Disponible en internet en: http://scaa.org/?page=resources&d=cupping-protocols [con acceso el 13/06/2016]
dc.relation/*ref*/SCHENKER, S.; ROTHGEB, T. 2017. The roast creating the beans' signature. In the craft and science of coffee. Ed. Britta Folmer (London): p.245-271. https://doi.org/10.1016/B978-0-12-803520-7.00011-6
dc.relation/*ref*/SUÁREZ, S.J.; RODRÍGUEZ, B.E.; DURAN, B.E. 2015. Efecto de las condiciones de cultivo, las características químicas del suelo y el manejo de grano en los atributos sensoriales de café (Coffea arabica L.) en taza. Acta Agronómica. 64(4):342-348. http://dx.doi.org/10.15446/acag.v64n4.44641
dc.relation/*ref*/WANG, N.; LIM, L.T. 2012. Fourier transform infrared and physicochemical analyses of roasted coffee. J. Agric. Food Chem. 60(21):5446-5453. https://doi.org/10.1021/jf300348e
dc.relation/*ref*/WEI, F.; TANOKURA, M. 2015. Chapter 10 - Chemical Changes in the Components of Coffee Beans during Roasting, In Coffee in Health and Disease Prevention, edited by Victor R. Preedy, Academic Press: 83-91
dc.relation/*ref*/WORKU, M.; MEULENAER, B.; DUCHATEAU, L.; BOECKX, P. 2018. Effect of altitude on biochemical composition and quality of green Arabica coffee beans can be affected by shade and postharvest processing method. Food Res. Internal. (United States) 108:278-285. https://doi.org/10.1016/j.foodres.2017.11.016
dc.rightsDerechos de autor 2019 Óscar M. Barrera B., Nelson Gutiérrez G., Dayana Orozco-Blancoes-ES
dc.sourceRevista U.D.C.A Actualidad & Divulgación Científica; Vol. 22 No. 1 (2019): Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junioen-US
dc.sourceRevista U.D.C.A Actualidad & Divulgación Científica; Vol. 22 Núm. 1 (2019): Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Junioes-ES
dc.sourceRevista U.D.C.A Actualidad & Divulgación Científica; v. 22 n. 1 (2019): Revista U.D.C.A Actualidad & Divulgación Científica. Enero-Juniopt-BR
dc.source2619-2551
dc.source0123-4226
dc.source10.31910/rudca.v22.n1.2019
dc.subjectalturaes-ES
dc.subjectanálisis sensoriales-ES
dc.subjectcafeínaes-ES
dc.subjectácidos clorogénicoses-ES
dc.subjectaltitudeen-US
dc.subjectsensory analysisen-US
dc.subjectchlorogenics acidsen-US
dc.subjectcaffeineen-US
dc.titleCharacterization and differentiation of coffee from infrared spectroscopyen-US
dc.titleCaracterización y diferenciación de cafés, a partir de espectroscopía infrarrojaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución