Biopelículas fotoactivas: material de empaque en alimentos sensibles a la oxidación

dc.creatorNiño Otálora, Lina Johanna
dc.creatorGarcía Torres, Angélica María
dc.creatorMedina Vargas, Oscar Julio
dc.creatorRojas Morales, Carlos Iván
dc.date2018-12-15
dc.date.accessioned2023-08-28T15:13:53Z
dc.date.available2023-08-28T15:13:53Z
dc.identifierhttps://revistas.udca.edu.co/index.php/ruadc/article/view/1080
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8442978
dc.descriptionPollution caused by plastic waste is one of the main emerging environmental problems of the 20th century. Particularly the use of plastic containers for food and beverages that occupies almost 50% of its total production. The elaboration of bioplastics from renewable raw materials emerges as an alternative of low environmental impact in the food industry sensitive to oxidation, conserving its organoleptic and nutritional quality. The aim of this research was to prepare biofilms from residual esterified potato starch, anchored to photoactive substances with different ranges of electromagnetic absorption: Betalaine, Rutin and Riboflavin, able to reduce oxidative processes induced by light in bovine meat samples. The physicochemical, mechanical and photoactive efficiency properties were evaluated. The results showed that the anchoring of the photoactive substances to the esterified starch optimizes the values of water solubility, transparency, acid-base stability and resistance to rupture of the biofilms. The greater photoactive protection was obtained with the biofilm of Rutin, reducing in 66.6% and 57.3% the oxidative degradation of proteins and lipids respectively. It is concluded that the esterification of residual potato starch and its subsequent anchoring of photoactive substances confers a potential use in the production of biodegradable food packaging.en-US
dc.descriptionLa contaminación, a causa de residuos plásticos, es uno de los principales problemas ambientales, emergentes del siglo XX. Particularmente, el uso de envases plásticos para alimentos y bebidas ocupa el 50% de su producción total. La producción de empaques bioplásticos, a partir de materias primas renovables, surge como alternativa de bajo impacto ambiental en la industria de alimentos, sensibles a la oxidación, conservando su calidad organoléptica y nutricional. Esta investigación tuvo como objetivo la elaboración de biopelículas, a partir de almidón residual esterificado de papa, anclado a sustancias fotoactivas, con diferentes rangos de absorción electromagnética: betalaína, rutina y riboflavina, capaces de disminuir los procesos oxidativos inducidos por la luz, en muestras de carne bovina. Se evaluaron las propiedades fisicoquímicas, mecánicas y de eficacia fotoactiva. Los resultados mostraron que el anclaje de las sustancias fotoactivas al almidón esterificado, optimizó los valores de solubilidad en agua, transparencia, estabilidad ácido-base y resistencia a la ruptura de las biopelículas. La mayor protección fotoactiva, se obtuvo con la biopelícula de rutina, reduciendo en un 66,6% y 57,3% la degradación oxidativa de proteínas y lípidos de la carne. Se concluye, que la esterificación del almidón residual de papa y su posterior anclaje de sustancias fotoactivas, le confiere un uso potencial en la producción de envases biodegradables para alimentos.es-ES
dc.formatapplication/pdf
dc.formatapplication/xml
dc.languagespa
dc.publisherUniversidad de Ciencias Aplicadas y Ambientales U.D.C.Aes-ES
dc.relationhttps://revistas.udca.edu.co/index.php/ruadc/article/view/1080/1524
dc.relationhttps://revistas.udca.edu.co/index.php/ruadc/article/view/1080/1688
dc.relation/*ref*/ACOPLÁSTICOS. 2018. Plásticos en Colombia. Plásticos, química, petroquímica, cauchos, pintura, tintas, fibras. p. 208-210. Disponible desde Internet en: https://www.acoplasticos.org/index.php/mnu-noti/143-ns-170907 (con acceso 23/02/2018).
dc.relation/*ref*/AOAC. 1990. Official Methods of Analysis. Association of Official Analytical Chemists (EUA). 15th (1):136-138.
dc.relation/*ref*/ASTM. 2003. Standard Test Method for Tensile Properties of Plastics, p.8.
dc.relation/*ref*/BRODY, A.; STRUPINSKY, B.; KLINE, L. 2001. Active packaging for food applications. Ed. Technomic Publishing Co (Lancaster). p.236-340.
dc.relation/*ref*/CARDENIA, V.; RODRIGUEZ-ESTRADA, M.T.; BOSELLI, E.; LERCKER, G. 2013. Cholesterol photosensitized oxidation in food and biological systems. Biochimie. 95(3):473-481. https://doi.org/10.1016/j.biochi.2012.07.012
dc.relation/*ref*/DEPARTAMENTO ADMINISTRATIVO NACIONAL DE ESTADÍSTICA –DANE-. 2016. Encuesta anual manufacturera. Disponible desde Internet en: https://www.dane.gov.co/files/investigaciones/boletines/eam/boletín_eam_2016.pdf (con acceso 23/02/2018).
dc.relation/*ref*/DE VARGAS MORES, G.; PAULETTO, C.; FINOCCHIO, S.; BARICHELLO, R.; AVILA, E. 2018. Sustainability and innovation in the brazilian supply chain of green plastic. J. Cleaner Production. 177:12-18. https://doi.org/10.1016/j.jclepro.2017.12.138
dc.relation/*ref*/ESCOBAR, D.; SALA, A.; SILVERA, C.; HARISPE, R.; MÁRQUEZ, R. 2009. Películas biodegradables y comestibles desarrolladas en base a aislado de proteínas de suero lácteo: estudio de dos métodos de elaboración y del uso de sorbato de potasio como conservador. INNOTEC. 4:33-36.
dc.relation/*ref*/FANG, J.M.; FOWLER, P.A.; SAYERS, C.; WILLIAMS, P.A. 2004. The chemical modification of a range of starches under aqueous reaction conditions. Carbohydrate Polymers. 55(3):283-289. https://doi.org/10.1016/j.carbpol.2003.10.003
dc.relation/*ref*/HAN, F.; LIU, M.; GONG, H.; LÜ, S.; NI, B.; ZHANG, B. 2012. Synthesis, characterization and functional properties of low substituted acetylated corn starch. Internal J. Biological Macromolecules. 50(4):1026-1034. https://doi.org/10.1016/j.ijbiomac.2012.02.030
dc.relation/*ref*/HEINZE, T.; LIEBERT, T.; KOSCHELLA, A. 2006. Esterification of polysaccharides. Springer-Berlin Verlag Heidelberg (New York). p.143-147.
dc.relation/*ref*/IlES, A.; MARTIN, A. 2013. Expanding bioplastics production: Sustainable business innovation in the chemical industry. J. Cleaner Production. 45:38-49. https://doi.org/10.1016/j.jclepro.2012.05.008
dc.relation/*ref*/JUÁREZ MONTIEL, R.G.; PINTO APAZA, N.; CANO DE TERRONES, T. 2013. Polimerización de compuestos antociánicos presentes en el colorante de la hierba santa (Cestrum hediondinum D.) y prueba de adsorción de iones aluminio (III). Rev. Soc. Quím. Perú. 79(1):71-79.
dc.relation/*ref*/LADEIRA, M.M.; SANTAROSA, L.C.; CHIZZOTTI, M.L.; RAMOS, E.M.; MACHADO NETO, O.R.; OLIVEIRA, D.M.; RIBEIRO, J.S. 2014. Fatty acid profile, color and lipid oxidation of meat from young bulls fed ground soybean or rumen protected fat with or without monensin. Meat Sci. 96(1):597-605. https://doi.org/10.1016/j.meatsci.2013.04.062
dc.relation/*ref*/LOPEZ-RUBIO, A.; CLARKE, J.M.; SCHERER, B.; TOPPING, D.L.; GILBERT, E.P. 2009. Structural modifications of granular starch upon acylation with short-chain fatty acids. Food Hydrocolloids. 23(7):1940-1946. https://doi.org/10.1016/j.foodhyd.2009.01.003
dc.relation/*ref*/LUNA, G.; VILLADA, H.; VELASCO, R. 2010. Almidón termoplástico de yuca reforzado con fibra de fique: Preliminares. Dyna. 76(159):145-51.
dc.relation/*ref*/MARTINS, L.; LOBO, B.; VINÍCIUS, L.; FRANCISCO DE AQUINO, S.; FRÉDÉRIC, L. 2014. Application of cellulose-immobilized riboflavin as a redox mediator for anaerobic degradation of a model azo dye remazol golden yellow RNL. Industrial Crops and Products. 65:454-462. https://doi.org/10.1016/j.indcrop.2014.10.059
dc.relation/*ref*/MEDINA, O.J.; PARDO, O.H.; ORTIZ, C.A. 2012. Modified arracacha starch films characterization and its potential utilization as food packaging. Vitae. (Colombia). p.186-196.
dc.relation/*ref*/MISHRA, S.; RAI, T. 2006. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocolloids. 20:557-566. https://doi.org/10.1016/j.foodhyd.2005.01.001
dc.relation/*ref*/MORRISON, W.R.; LAIGNELET, B. 1983. An Improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Science. 1(1):9-20. https://doi.org/10.1016/S0733-5210(83)80004-6
dc.relation/*ref*/MULHBACHER, J.; ISPAS-SZABO, P.; MATEESCU, M.A. 2004. Cross-linked high amylose starch derivatives for drug release: ll. Swelling properties and mechanistic study. International J. Pharmaceutics. 278(2):231-238. https://doi.org/10.1016/j.ijpharm.2004.03.008
dc.relation/*ref*/OLIVER, C.N.; AHN, B.W.; MOERMANS, E.J.; GOLDSTEIN, S.; STADTMAN, R. 1987. Age-related changes in oxidized proteins. J. Biological Chemistry. 262(12):5488-5491.
dc.relation/*ref*/ORTEGA-TORO, R.; TALENS, P.; CHIRALT, A. 2015. Influence of citric acid on the properties and stability of starch-polycaprolactone based films. J. Applied Polymer Science. 132(2):1-16. https://doi.org/10.1002/app.42220
dc.relation/*ref*/PEÑARANDA, O.I.; PERILLA, J.E.; ALGECIRA, N.A. 2008. Revisión de la modificación química del almidón con ácidos orgánicos. Ingeniería e Investigación. (Colombia). 28(3):47-52.
dc.relation/*ref*/RENDÓN, R.; GARCÍA, E.; GUIZADO, M.; SALGADO R.; RENGEL, N. 2011. Obtención y caracterización de almidón de platano (Musa paradisiaca L.) acetilado a diferentes grados de sustitución. Afinidad LXV. p.294-300.
dc.relation/*ref*/RUIZ AVILÉS, G. 2006. Obtención y caracterización de un polímero biodegradable a partir del almidón de yuca. Ingeniería y Ciencia. (Colombia). 2(4):5-28.
dc.relation/*ref*/SCHIRMER, M.; HÖCHSTÖTTER, A.; JEKLE, M.; ARENDT, E.; BECKER, T. 2013. Food hydrocolloids physicochemical and morphological characterization of different starches with variable amylose/ amylopectin ratio. Food Hydrocolloids. 32(1):52-63. https://doi.org/10.1021/jf904531d
dc.relation/*ref*/SELKE, S.E.M.; CULTER, J.D.; HERNANDEZ, R.J. 2016. Plastics packaging: properties, processing, Applications and Regulations. Carl Hanser Verlag, 2nd Edition (Munich). 448p.
dc.relation/*ref*/SODHI, N.S.; SINGH, N. 2005. Characteristics of acetylated starches prepared using starches separated from different rice cultivars. J. Food Engineering. 70(1):117-127. https://doi.org/10.1016/j.jfoodeng.2004.09.018
dc.relation/*ref*/WANG, S.; SHARP, P.; COPELAND, L. 2011. Structural and functional properties of starches from field peas. Food chemistry. 126(4):1546-1552. https://doi.org/10.1016/j.foodchem.2010.11.154
dc.rightsDerechos de autor 2018 Lina Johanna Niño Otálora, Angélica María García Torres, Oscar Julio Medina Vargas, Carlos Iván Rojas Moraleses-ES
dc.sourceRevista U.D.C.A Actualidad & Divulgación Científica; Vol. 21 No. 2 (2018): Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre; 457-466en-US
dc.sourceRevista U.D.C.A Actualidad & Divulgación Científica; Vol. 21 Núm. 2 (2018): Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre; 457-466es-ES
dc.sourceRevista U.D.C.A Actualidad & Divulgación Científica; v. 21 n. 2 (2018): Revista U.D.C.A Actualidad & Divulgación Científica. Julio-Diciembre; 457-466pt-BR
dc.source2619-2551
dc.source0123-4226
dc.source10.31910/rudca.v21.n2.2018
dc.subjectBiopelículases-ES
dc.subjectempaque de alimentoses-ES
dc.subjectsustancias fotoactivases-ES
dc.subjectalmidónes-ES
dc.subjectdegradación oxidativaes-ES
dc.subjectbiofilmsen-US
dc.subjectfood packagingen-US
dc.subjectphotoactive substancesen-US
dc.subjectstarchen-US
dc.subjectoxidative degradationen-US
dc.titlePhotoactive biofilms: packaging materials in oxidation sensitive foodsen-US
dc.titleBiopelículas fotoactivas: material de empaque en alimentos sensibles a la oxidaciónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Este ítem pertenece a la siguiente institución