Removal of lead and nickel in aqueous solutions using lignocellulosic biomass: a review
Remoción de plomo y níquel en soluciones acuosas usando biomasas lignocelulósicas: una revisión
dc.creator | Quiñones, Edgar | |
dc.creator | Tejada, Candelaria | |
dc.creator | Arcia, Cesar | |
dc.creator | Ruiz, Víctor | |
dc.date | 2013-12-31 | |
dc.date.accessioned | 2023-08-28T15:13:35Z | |
dc.date.available | 2023-08-28T15:13:35Z | |
dc.identifier | https://revistas.udca.edu.co/index.php/ruadc/article/view/922 | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8442901 | |
dc.description | The present review identifies bioadsorbents, extracted from residual biomass used in the removal of two highly toxic heavy metals in the environment: lead and nickel. The ability of removal was evaluated, highlighting those which showed removal, presenting the kinetics applied in these experiments. The bioadsorbente used include wood waste, nut shells, grain waste and citrus. It was found that for the removal of lead(II), the sugar cane bagasse with a removal capacity of 333mg/g and for nickel (II) acacia bark with a removal capacity of 294.1mg/g, stand out. These bioadsorbents are those reported with efficient removal ability. The kinetics of the adsorption process in most of the revised experiments is governed by the rate equation of pseudo-second order. A design of a pilot plant for removal of metal ions with biomasses with high adsorption capacity is recommended in order that these processes can be carried out in an industrial scale. | en-US |
dc.description | En la presente revisión, se identifican los bioadsorbentes extraídos de biomasas residuales utilizadas en la remoción de dos metales pesados, que presenta una amplia toxicidad para el ambiente: plomo y níquel. Se evalúa la capacidad de remoción de los mismos, destacando aquellos en los que se han obtenido altos porcentajes de remoción, mostrando la cinética aplicada en estos experimentos. Se encontró, que los bioadsorbentes más usados incluyen residuos de madera, cáscaras de frutos secos, residuos de cereales y cítricos. Para la remoción de plomo (II), el bagazo de caña de azúcar, con una capacidad de remoción de 333mg/g y para el níquel (II), la corteza de Acacia, con una capacidad de remoción de 294,1mg/g, han sido los bioadsorbentes con mayor eficiencia de remoción. Se encuentra que, en la mayoría de los experimentos, la cinética del proceso de adsorción es regida por la ecuación cinética de pseudo-segundo orden. Se recomienda el diseño de plantas piloto para la remoción de iones metálicos con las biomasas que mostraron mayor capacidad de adsorción, con el fin de que estos procesos puedan ser llevados a escala industrial. | es-ES |
dc.format | application/pdf | |
dc.format | text/html | |
dc.language | spa | |
dc.publisher | Universidad de Ciencias Aplicadas y Ambientales U.D.C.A | es-ES |
dc.relation | https://revistas.udca.edu.co/index.php/ruadc/article/view/922/1116 | |
dc.relation | https://revistas.udca.edu.co/index.php/ruadc/article/view/922/1117 | |
dc.relation | /*ref*/ACEVEDO, S.; COLINA, M.; DÍAZ, A.; FERNÁNDEZ, N.; BEHLING, E.; MARÍN, J.; COLINA, G. 2007.Chemical activation of sugar cane bagasse (Saccharum officinarum) on nickel(II) adsorption in industrial effluents. Rev. Téc. Ing. Univ. Zulia. 30(3):244-252. | |
dc.relation | /*ref*/AHLUWALIA, S.S.; GOYAL, D. 2007. Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores.Techn. 98:2243-2257. | |
dc.relation | /*ref*/ALOMA, L.; LARA, M.; RODRÍGUEZ, I.; BLAZQUEZ, G.; CALERO, M. 2012. Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. J. Taiwan Inst. Chem. Eng. 43(2):275-281. | |
dc.relation | /*ref*/ALONSO, J.A. 2008. Los metales pesados en las aguas residuales. Disponible desde Internet en:http://www.madrimasd.org/blogs/remtavares/2008/02/02/83698 (con acceso 13/11/2012). | |
dc.relation | /*ref*/ANANDKUMAR, J.; MANDAL, B. 2009. Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos Correa) shell as an adsorbent. J. Haz. Mat. 168:633-640. | |
dc.relation | /*ref*/ANOOP KRISHNAN, K.; SREEJALEKSHMI, K.G.; BAIJU, R.S. 2011. Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Biores. Techn. 102:10239-10247. | |
dc.relation | /*ref*/ANWAR, J.; SHAFIQUE, U.; ZAMAN, W.; SALMAN, M.; DAR, A.; ANWAR, S. 2010. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Biores. Techn. 101:1752-1755. | |
dc.relation | /*ref*/BHATNAGARA, A.; MINOCHAA, A. 2010. Biosorption optimization of nickel removal from water using Punica granatum peel waste. Colloids and Surfaces B: Biointerfaces. 76(2):544-548. | |
dc.relation | /*ref*/BULUT, Y.; TEZ, Z. 2007. Removal of heavy metals from aqueous solution by sawdust adsorption. J. Environ. Sci. 19:160-166. | |
dc.relation | /*ref*/CAÑIZARES-VILLANUEVA, R.O. 2000.Biosorción de metalespesados mediante el uso de biomasa microbiana. Rev. Latinoam. Microbiol. 42:131-143. | |
dc.relation | /*ref*/CAVACO, S.A.; FERNANDES, S.; QUINA, M.M.; FERREIRA, L.M. 2007. Removal of chromium from electroplating industry effluents by ion exchange resins. J. Haz. Mat. 144:634-638. | |
dc.relation | /*ref*/CHAKRAVARTY, S.; MOHANTY, A.; NAG SUDHA, T.; UPADHYAY, A.K.; KONAR, J.; SIRCAR, J.K.; MADHUKAR, A. 2010. Removal of Pb(II) ions from aqueous solution by adsorption using bael leaves (Aegle marmelos). J. Haz. Mat. 173:502-509. | |
dc.relation | /*ref*/CHEN, H.; ZHAO, J.; DAI, G.; WU, J.; YAN, H. 2010. Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination. 262:174-182. | |
dc.relation | /*ref*/CHEUNG, C.W.; PORTER, J.F.; McKAY, G. 2000. Elovich equation and modified second-order equation for sorption of cadmium ions onto bone char. J. Chem. Techn & Biotechn. 75(11):963-970. | |
dc.relation | /*ref*/DABROWSKI, A. 2001. Adsorption-from theory to practice. Adv. Colloid and Interface Sci. 93:135-224. | |
dc.relation | /*ref*/EL-SHAFEY, E. 2010. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J. Haz. Mat. 175:319-327. | |
dc.relation | /*ref*/FENG, N.; GUO, X.; LIANG, S.; ZHU, Y.; LIU, J. 2011. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Haz. Mat. 185(1):49-54. | |
dc.relation | /*ref*/GARCÍA-ROSALES, G.; COLÍN-CRUZ, A. 2010. Biosorption of lead by maize (Zea mays) stalk sponge. J. Environ. Manag. 91:2079-2086. | |
dc.relation | /*ref*/GUNDOGDUA, A.; OZDESA, D.; DURANA, C.; BULUT, V.; SOYLAKB, M.; SENTURKA, H. 2009. Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten). J. Chem. Eng. 153(1-3):62-69. | |
dc.relation | /*ref*/GUPTA, S.; BABU, B. 2009. Removal of toxic metal Cr(VI) from aqueous solutions using sawdust as adsorbent: Equilibrium, kinetics and regeneration studies. J. Chem. Eng. 150:352-365. | |
dc.relation | /*ref*/HARIKISHORE, D.; RAMANA, D.; SESHAIAH, K.; REDDY, A. 2011. Biosorption of Ni(II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination. 268(1-3):150-157. | |
dc.relation | /*ref*/HARIKISHORE, D.; REDDYA, K.; SESHAIAHA, K.; REDDYB, A.; LEE S. 2012. Optimization of Cd(II), Cu(II) and Ni(II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydrate Polymers. 88(3):1077-1086. | |
dc.relation | /*ref*/HO, Y.S.; MCKAY, G. 1999. Pseudosecond order model for sorption processes. Process Biochem. 34(5):451-465. | |
dc.relation | /*ref*/HUSSEIN, H.; IBRAHIM, S.F; KANDEEL, K.; MOAWAD, H. 2004. Biosorption of heavy metals from waste water using Pseudomonas sp. Environ. Biotech. 7(1):1023-1027. | |
dc.relation | /*ref*/KARNITZ, O.; ALVES, L. 2009. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohyd. Polym. 77:643-650. | |
dc.relation | /*ref*/LASHEEN, M.; AMMAR, N.; IBRAHIM, H. 2012. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sci. 14:202-210. | |
dc.relation | /*ref*/MADHAVA, M.; KUMAR, D.; VENKATESWARLU, P.; SESHAIAH, K. 2009. Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. J. Environ. Manag. 90(1):634-643. | |
dc.relation | /*ref*/MANZOOR, S.; SHAH, M.; SHAHEEN, N.; KHALIQUE, A; JAFFAR, M. 2006. Multivariate analysis of trace metals in textile effluents in relation to groundwater. J. Haz. Mat. 137:31-37. | |
dc.relation | /*ref*/MEMON, J.; MEMON, S.; BHANGER, M.; EL-TURKI, A.; HALLAM, K.; ALLEN, G. 2009. Banana peel: A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Colloids and Surfaces B: Biointerfaces. 70:232-237. | |
dc.relation | /*ref*/MOHAN, D.; PITTMAN, C.U. 2006. Activated carbons and low cost adsorbents for remediation of triand hexavalent chromium from water. J. Haz. Mat. 137:762-811. | |
dc.relation | /*ref*/MOUSSAVI, G.; BARIKBIN, B. 2010. Biosorption of chromium(VI) from industrial wastewater onto pistachio hull waste biomass. J. Chem. Eng. 162:893-900. | |
dc.relation | /*ref*/MUHAMMAD, N.; RAZIYA, N.; MUHAMMAD, A. 2007. Biosorption of nickel from protonated rice bran. J. Haz. Mat. 143(1-2):478-485. | |
dc.relation | /*ref*/NUHOGLU, Y.; MALKOC, E. 2009. Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresource Techn. 100:2375-2380. | |
dc.relation | /*ref*/ONWU, F.K.; OGAH, S.P. 2010. Studies on the effect of pH on the sorption of cadmium (ll), nickel (II), lead (II) and chromium (VI) from aqueous solutions by african white star apple (Chrysophyllum albidium) shell. J. Biotechn. 9(42):7086-7093. | |
dc.relation | /*ref*/OSMAN, H.E; BADWY, R.K.; AHMAD, H.F. 2010. Usage of some agricultural by-products in theRemoval of some heavy metals from industrial wastewater. J. Phytol. 2(3):51-62. | |
dc.relation | /*ref*/PINZÓN-BEDOYA, M.L.; VERA-VILLAMIZAR, L.E. 2009. Modelamiento de la cinética de bioadsorción de Cr (III) usando cáscara de naranja. Dyna. 76(160):95-106. | |
dc.relation | /*ref*/QAISER, S.; SALEEMI, A.; UMAR, M. 2009. Biosorption of lead(II) and chromium(VI) on groundnut hull: Equilibrium, kinetics and thermodynamics study. Electronic J. Biotechn.12(4):1-17. | |
dc.relation | /*ref*/RAFATULLAHA, M.; SULAIMANA, O.; HASHIMA, R.; AHMADB, A. 2009. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Haz. Mat. 170:969-977. | |
dc.relation | /*ref*/RAO, R.; REHMAN, F. 2010. Adsorption studies on fruits of Gular (Ficus glomerata): Removal of Cr(VI) from synthetic wastewater. J. Haz. Mat. 181:405-412. | |
dc.relation | /*ref*/RAO-POPURI, S.; JAMMALA, A.; NAGA, S.R.; KACHIREDDY, V.; ABBURI, K. 2007. Biosorption of hexavalent chromium using tamarind (Tamarindus indica) fruit shell-a comparative study. Electronic J. Biotechn. 10(3):358-367. | |
dc.relation | /*ref*/RIAZA, M.; NADEEMA, R.; HANIFA, M.; ANSARIC, T.; REHMANA, K. 2009. Pb(II) biosorption from hazardous aqueous streams using Gossypium hirsutum (Cotton) waste biomass. J. Haz. Mat. 161(1):88-94. | |
dc.relation | /*ref*/SAEED, A.; IQBAL, M.; HOLL, W. 2009. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. J. Haz. Mat. 168:1467-1475. | |
dc.relation | /*ref*/SHIH-WEI, L.A.; CHUN-I, L.; LI-HWA, W. 2011. Kinetic study on lead (II) ion removal by adsorption onto peanut hull ash. J. Taiwan Inst. Chem. Eng. 42:166-172. | |
dc.relation | /*ref*/SINGH, K.; HASAN, S.; TALAT, M.; SINGH, V.; GANGWAR, S. 2009. Removal of Cr (VI) from aqueous solutions using wheat bran. J. Chem. Eng. 151:113-121. | |
dc.relation | /*ref*/SRIVASTAVA, V.; MALL, I.; MISHRA, I. 2009. Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash. Chem. Eng. Processing. 48:370-379. | |
dc.relation | /*ref*/TAPIA, N.J.; MUÑOZ, J.C.; TORRES, F.; YARANGO, A. 2003. Biosorción de plomo (II) por cascara de naranja, Citrus sinensis modificada. Rev. Per. Quim. Ing. Quim. 5(2):48-53. | |
dc.relation | /*ref*/TATY-COSTODES, V.C.; FAUDUET, H.; PORTE, C.; DELACROIX, A. 2003. Removal of Cd(II) and Pb(II) ions, fromaqueous solutions, by adsorption ontosawdust of Pinus sylvestris. J. Haz. Mat. 105:121-142. | |
dc.relation | /*ref*/THEVANNAN, A.; MUNGROO, R.; HUI, C. 2010. Biosorption of nickel with barley straw. Bioresource Techn. 101(6):1776-1780. | |
dc.relation | /*ref*/VENKATA, M.; SUBBAIAH, Y.; VIJAYA, N.; SIVA, K.; SUBBA, A.; KRISHNAIAH, A. 2009. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies. Colloids and Surfaces B: Biointerfaces. 74(1):260-265. | |
dc.relation | /*ref*/WEBER, W.J.; MORRIS, J.C. 1963. Kinetics of adsorption on carbon from solution. J. San. Eng. Div. ASCE. 89:31-59. | |
dc.relation | /*ref*/WITEK-KROWIAK, A.; SZAFRAN, R.; MODELSKI, S. 2011. Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent. Desalination. 265:126-134. | |
dc.relation | /*ref*/YE, H.; ZHU, Q.; DU, D. 2010. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Bioresource Techn. 101:5175-5179. | |
dc.relation | /*ref*/ZABIHI, M.; HAGHIGHI, A.A.; AHMADPOUR, A. 2010. Studies on adsorption of mercury from aqueous solution on activated carbons prepared from walnut shell. J. Haz. Mat. 174:251-256. | |
dc.relation | /*ref*/ZAHEER, A.M.; RAMZAN, N.; NAVEED, S.Y.; FEROZE, N. 2010. Ni(II) removal by biosorption using Ficus religiosa (peepal) leaves. J. Chil. Chem. Soc. 55(1):81-84. | |
dc.source | Revista U.D.C.A Actualidad & Divulgación Científica; Vol. 16 No. 2 (2013): Revista U.D.C.A. Actualidad & Divulgación Científica. Julio-Diciembre; 479-489 | en-US |
dc.source | Revista U.D.C.A Actualidad & Divulgación Científica; Vol. 16 Núm. 2 (2013): Revista U.D.C.A. Actualidad & Divulgación Científica. Julio-Diciembre; 479-489 | es-ES |
dc.source | Revista U.D.C.A Actualidad & Divulgación Científica; v. 16 n. 2 (2013): Revista U.D.C.A. Actualidad & Divulgación Científica. Julio-Diciembre; 479-489 | pt-BR |
dc.source | 2619-2551 | |
dc.source | 0123-4226 | |
dc.source | 10.31910/rudca.v16.n2.2013 | |
dc.subject | Adsorción | es-ES |
dc.subject | Bioadsorbente | es-ES |
dc.subject | Ion metálico | es-ES |
dc.subject | Adsorption | en-US |
dc.subject | Bioadsorbent | en-US |
dc.subject | Metalion | en-US |
dc.title | Removal of lead and nickel in aqueous solutions using lignocellulosic biomass: a review | en-US |
dc.title | Remoción de plomo y níquel en soluciones acuosas usando biomasas lignocelulósicas: una revisión | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |