dc.contributor | Ramírez, José Luis | |
dc.contributor | Discremath: Matemáticas Discretas y Ciencias de la Computación | |
dc.creator | Moreno Garzón, Andrés Ricardo | |
dc.date.accessioned | 2023-08-04T14:21:20Z | |
dc.date.accessioned | 2023-08-25T14:16:09Z | |
dc.date.available | 2023-08-04T14:21:20Z | |
dc.date.available | 2023-08-25T14:16:09Z | |
dc.date.created | 2023-08-04T14:21:20Z | |
dc.date.issued | 2023-01-31 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84451 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8427079 | |
dc.description.abstract | En este trabajo se estudia la ocurrencia en palabras, particiones de conjuntos y composiciones de enteros de las estadísticas pico simétrico, asociada a la ocurrencia del patrón 121, y pico asimétrico, asociada a la ocurrencia de los patrones 132 y 231, utilizando métodos combinatorios y analíticos como conteo directo, funciones generatrices, fórmulas recursivas y el método simbólico. En palabras, con base en las ideas y resultados obtenidos por Asakly en [1] se obtiene una nueva demostración por conteo para la cantidad de picos simétricos y asimétricos en palabras. Posteriormente se extienden estas ideas, métodos y resultados para el estudio de la ocurrencia de picos simétricos y asimétricos en particiones de conjuntos y composiciones donde no se tienen resultados previos asociados, obteniendo fórmulas cerradas para la cantidad de picos simétricos y asimétricos y extendiendo estos resultados a composiciones restringidas y composiciones palíndromas. (Texto tomado de la fuente) | |
dc.description.abstract | This paper studies the occurrence in words, set partitions, and compositions of integers of
the symmetric peak statistics, associated with the occurrence of pattern 121, and asymmetric peak, associated with the occurrence of patterns 132 and 231, using combinatorial and
analytical methods as direct counting, generating functions, recursive formulas and the symbolic method. In words, based on the ideas and results obtained by Asakly in [1], a new
proof is obtained by counting for the number of symmetric and asymmetric peaks in words.
Subsequently, these ideas, methods and results are extended for the study of the occurrence
of symmetric and asymmetric peaks in partitions of sets and compositions where there are
no previous associated results, obtaining closed formulas for the number of symmetric and
asymmetric peaks and extending these results to restricted compositions and palindromic
compositions. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá,Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | W. Asakly. Enumerating symmetric and non-symmetric peaks in words. Online Journal of Analytic Combinatorics. 13, (2018). | |
dc.relation | W. Asakly. Statistics in words and partitions of a set. Annales Mathematicae et Informaticae. 46 (2016), 3-12. | |
dc.relation | A. Bacher, A. Bernini, L. Ferrari, B. Gunby, R. Pinzani y J. West. The Dyck pattern poset. Discrete Mathematics, 321, 12-23. (2014). | |
dc.relation | E. Czabarka, R. Flórez, L. Junes y J. Ramirez. Enumerations of peaks and valleys on non-decreasing Dyck paths. Discrete Mathematics, 341(10), 2789-2807. (2018). | |
dc.relation | P. Flajolet y R. Sedgewick. Analytic Combinatorics. Princeton, 2005. | |
dc.relation | R. Florez y J Ramírez. Enumerating symmetric and asymmetric peaks in Dyck paths Discrete Mathematics 343.(12), 112118. (2020). | |
dc.relation | S. Heubach y T. Mansour. Combinatorics of Compositions and Words. Taylor & Francis Group. CRC Press, 2010. | |
dc.relation | S. Heubach y T. Mansour. Enumeration of 3-letter patterns in compositions. Combinatorial Number Theory, 243-264.(2007). | |
dc.relation | M. Janjíc. Binomial coefficients and enumeration of restricted words. Journal Integer Sequences, 19 (2016), Art.16.7.3. | |
dc.relation | S. Kitaev. Patterns in Permutations and Words. Springer, 2011. | |
dc.relation | P.A. MacMahon. Memoir on the theory of the compositions of numbers. Philosophical Transactions. Royal Society 184 (1893), 835–901. | |
dc.relation | T. Mansour. Combinatorics of Set Partitions. Taylor & Francis Group, CRC Press, 2013. | |
dc.relation | T. Mansour, A. Moreno y J. Ramírez. Symmetric and asymmetric peaks in compositions. Preprint (2022). | |
dc.relation | T. Mansour y M. Shattuck. Counting peaks and valleys in a partition of a set. Journal Integer Sequences, 10:2 (2010), Art.10.6.8. | |
dc.relation | J. L. Ramírez. Introducción a la teoría de composiciones. Notas de Clase. Marzo, (2019). | |
dc.relation | R. Sedgewick y P. Flajolet. An Introduction to the Analysis of Algorithms. Pearson, 2013. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Conte de simetrías en objetos discretos | |
dc.type | Trabajo de grado - Maestría | |