dc.contributorde Brito Brandão, Pedro Filipe
dc.contributorGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina
dc.creatorDiez Marulanda, Juan Camilo
dc.date.accessioned2023-06-26T20:22:10Z
dc.date.accessioned2023-08-25T14:14:53Z
dc.date.available2023-06-26T20:22:10Z
dc.date.available2023-08-25T14:14:53Z
dc.date.created2023-06-26T20:22:10Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84073
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8427074
dc.description.abstractEl cadmio (Cd) es un metal pesado tóxico que causa problemas graves a la salud y está presente en suelos con importancia de agricultura en Colombia, como aquellos usados para el cultivo de cacao. Este metal, en su forma catiónica, puede ser tomado por la planta de cacao y bioacumulado en sus órganos. De esta forma, el Cd puede llegar a los humanos por medio del consumo de productos basados en cacao. Debido a este problema, en 2019 la Unión Europea adicionó algunos alimentos en base de cacao (ej.: chocolate, cocoa) al reglamento 1881 de 2006 que regula la cantidad de Cd en alimentos, lo cual implica una problemática para los cultivadores y exportadores de cacao del país, particularmente de Santander al tener algunos suelos con presencia de Cd y ser el mayor productor a nivel nacional. Recientemente, se ha propuesto el uso de bacterias ureolíticas por el método de precipitación de carbonatos inducida por microorganismos (MICP, por sus siglas en inglés Microbiologically Induced Carbonate Precipitation) como medida para mitigar la disponibilidad de Cd(II) en suelos contaminados. Así, el objetivo del presente trabajo fue evaluar la capacidad para bioprecipitar Cd de una selección de bacterias ureolíticas resistentes al metal, aisladas de fincas cacaoteras de El Carmen de Chucurí, Santander. Tres bacterias ureolíticas Gram negativas resistentes a Cd, Serratia sp. 4.1a, Serratia sp. 5b y Acinetobacter sp. 6a, fueron seleccionadas basado en su actividad ureasa, formación de precipitados y crecimiento en medios de cultivo con Cd. Estas bacterias exhibieron bajas actividades ureasa (3,09; 1,34 y 0,31 μmol NH4+ mL-1 h-1, respectivamente), pero tuvieron la capacidad de elevar el pH a valores cercanos a 9.0 y de producir precipitados. Se probó que el Cd(II) afecta el crecimiento de las bacterias seleccionados; sin embargo, su actividad ureasa no fue influenciada negativamente. Por otro lado, la presencia de 250 μM Ni(II) en el medio de cultivo aumentó significativamente la actividad ureasa de Acinetobacter sp. 6a, mientras que no hubo un efecto considerable para las dos bacterias Serratia. El crecimiento de Serratia sp. 4.1a y Serratia sp. 5b se inhibió desde 4 mM de Cd(II) en el medio de cultivo, en tanto Acinetobacter sp. 6a presentó inhibición a 1 mM de Cd(II), por lo que se concluye que las tres bacterias pueden vivir en concentraciones más altas que aquellas encontradas en los suelos a tratar. Con respecto a la eficacia de remoción, para una concentración inicial de 0,05 mM de Cd(II) en medio líquido, se encontraron porcentajes máximos de remoción de 99,70%, 99,62% y 91,23% para Serratia sp. 4.1a, Serratia sp. 5b y Acinetobacter sp. 6a, respectivamente, mientras que para 0,15 mM de Cd(II) inicial, las remociones fueron de 99,30%, 99,57% y 98,87%, respectivamente. Los precipitados producidos por las bacterias Serratia durante el proceso de remoción de Cd, fueron identificados como calcita por DRX, encontrando también por EDX que parte del Cd se inmovilizó en esta matriz. Por último, se determinó la presencia de un gen de resistencia a Cd, parte del operón czc, en Serratia sp. 5b y Acinetobacter sp. 6a. Se pudo observar que la presencia del metal no tuvo un efecto significativo sobre su expresión, pero la presencia de urea sí. Considerando toda la información anterior, este trabajo evidencia el potencial uso de las tres bacterias seleccionadas para aplicaciones en tratamientos de muestras ambientales contaminadas con Cd. Además, es de los pocos reportes de uso de bacterias del género Serratia para remediar Cd, y aparentemente el primero en reportar la expresión diferencial de un gen de resistencia a Cd por acción de la urea. (Texto tomado de la fuente).
dc.description.abstractCadmium (Cd) is a toxic heavy metal that causes serious health problems and is present in agriculturally important soils in Colombia, such as those used for cocoa production. This metal, in its cationic form, can be taken up by the cocoa plant and bioaccumulated in its organs. In this way, Cd can reach humans through the consumption of cocoa-based products. Due to this problem, in 2019 the European Union added some cocoa-based foods (e.g., chocolate, cocoa) to regulation 1881 of 2006 that controls the amount of Cd in food, which implies a problem for cocoa growers and exporters in the country, particularly in Santander as it has presence of Cd in some soils, and it is the largest producer at national level. Recently, the use of ureolytic bacteria by the Microbiologically Induced Carbonate Precipitation (MICP) method has been proposed as a measure to mitigate the availability of Cd(II) in contaminated soils. Thus, the objective of the present work was to evaluate the capacity to bioprecipitate Cd of a selection of ureolytic bacteria resistant to the metal, isolated from cocoa farms in El Carmen de Chucurí, Santander. Three Gram negative ureolytic – Cd resistant bacteria, Serratia sp. 4.1a, Serratia sp. 5b and Acinetobacter sp. 6a, were selected based on their urease activity, precipitates formation and growth in culture media containing Cd. These bacteria exhibited low urease activities (3.09, 1.34 and 0.31 μmol NH4+ mL-1 h-1, respectively), but had the ability to raise pH to values close to 9.0 and to produce precipitates. Cd(II) was proven to affect the growth of selected bacteria; however, their urease activity was not negatively influenced. On the other hand, the presence of 250 μM Ni(II) in the culture medium significantly increased the urease activity of Acinetobacter sp. 6a, while there was no considerable effect for the two Serratia bacteria. The growth of Serratia sp. 4.1a and Serratia sp. 5b was inhibited at 4mM Cd(II) in the culture medium, while Acinetobacter sp. 6a was inhibited at 1 mM Cd(II), thus concluding that the three bacteria can live at higher concentrations than those found in the soils to be treated. Regarding removal efficiency, for an initial concentration of 0.05 mM Cd(II) in liquid medium, maximum removal percentages of 99.70%, 99.62% and 91.23% were determined for Serratia sp. 4.1a, Serratia sp. 5b y Acinetobacter sp. 6a, respectively; while for 0.15 mM initial Cd(II), removals were 99.30%, 99.57% and 98.87%, respectively. The precipitates produced by the Serratia bacteria during the Cd removal process were identified as calcite by XRD, also finding by EDX analysis that part of the Cd was immobilized in this matrix. Finally, the presence of a Cd resistance gene, part of the czc operon, was determined in Serratia sp. 5b and Acinetobacter sp. 6a. It was observed that presence of the metal did not have a significant effect on its expression, but the presence of urea did. Considering all the above information, this work evidences the potential use of the three selected bacteria for applications in the treatment of Cd-contaminated environmental samples. In addition, it is one of the few works reporting the use of bacteria belonging to the genus Serratia for Cd remediation, and apparently the first to report the differential expression of a Cd resistance gene due to presence of urea.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgrosavia
dc.relationAgrovoc
dc.relationAbbas, S. Z., Rafatullah, M., Hossain, K., Ismail, N., Tajarudin, H. A. & Abdul Khalil, H. P. S. (2017). A review on mechanism and future perspectives of cadmium-resistant bacteria. International Journal of Environmental Science and Technology, 15, 243-262. DOI: 10.1007/s13762-017-1400-5
dc.relationAchal, V. & Pan, X. (2014). Influence of Calcium Sources on Microbially Induced Calcium Carbonate Precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology, 173(1), 307–317. DOI:10.1007/s12010-014-0842-1
dc.relationAdriano, D. (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals (2da ed). New York: Springer-Verlag.
dc.relationAlhindi, T. & Albdaiwi, R. (2022). Draft Genome Sequence of Oceanobacillus jordanicus Strain GSFE11, a Halotolerant Plant Growth-Promoting Bacterial Endophyte Isolated From the Jordan Valley. Evolutionary Bioinformatics Online, 18, 11769343211071114. DOI: 10.1177/11769343211071114
dc.relationAlonso, M. J. C., Ortiz, C. E. L., Perez, S. O. G., Narayanasamy, R., Fajardo San Miguel, G. del J., Hernández, H. H. & Balagurusamy, N. (2017). Improved strength and durability of concrete through metabolic activity of ureolytic bacteria. Environmental Science and Pollution Research, 25(22), 21451–21458. DOI:10.1007/s11356-017-9347-0
dc.relationAnbu, P., Kang, C. H., Shin, Y. J. & So, J. S. (2016). Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus, 5(250). DOI: 10.1186/s40064-016-1869-2
dc.relationAshraf, R. & Ali, T. A. (2007). Effect of heavy metals on soil microbial community and mung beans seed germination. Pakistan Journal of Botany, 39(2), 629-636.
dc.relationBenoit, S. L. & Maier, R. J. (2011). Mua (HP0868) Is a Nickel-Binding Protein That Modulates Urease Activity in Helicobacter pylori. mBio, 2(2), e00039-11. DOI:10.1128/mbio.00039-11
dc.relationBenzerara, K., Miot, J., Morin, G., Ona-Nguema, G., Skouri-Panet, F. & Férard, C. (2011). Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geoscience, 343(2-3), 160–167. DOI:10.1016/j.crte.2010.09.002
dc.relationBhattacharya, A., Naik, S. N. & Khare, S. K. (2018). Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 215, 145-152. DOI: 10.1016/j.jenvman.2018.03.055
dc.relationBrandão, P. F. B., Torimura, M., Kurane, R. & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Applied Microbiology and Biotechnology, 58(1), 77-83. DOI: 10.1007/s00253-001-0855-x
dc.relationBrauner, A., Fridman, O., Gefen, O., & Balaban, N. Q. (2016). Distinguishing between resistance, tolerance, and persistence to antibiotic treatment. Nature Reviews Microbiology, 14(5), 320–330. DOI:10.1038/nrmicro.2016.34
dc.relationBravo, D., Leon-Moreno, C., Martínez, C. A., Varón-Ramírez, V. M., Araujo-Carrillo, G. A., Vargas, R., Quiroga-Mateus, R., Zamora, A. & Gutiérrez-Rodríguez, E. A. (2021). The First National Survey of Cadmium in Cacao Farm Soil in Colombia. Agronomy, 11(761). DOI: 10.3390/agronomy11040761
dc.relationBustin, S., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, N., Shipley, G., Vandesompele, J. & Wittwer, C. (2009). The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55(4), 611-622. DOI: 10.1373/clinchem.2008.112797
dc.relationCartwright, J. H. E., Checa, A. G., Gale, J. D., Gebauer, D. & Sainz-Díaz, C. I. (2012). Calcium Carbonate Polyamorphism and Its Role in Biomineralization: How Many Amorphous Calcium Carbonates Are There? Angewandte Chemie International Edition, 51(48), 11960–11970. DOI:10.1002/anie.201203125
dc.relationChellaiah, E. R. (2018). Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Applied Water Science, 8(6). DOI:10.1007/s13201-018-0796-5
dc.relationChen, J., Huang, P. T., Zhang, K. Y. & Ding, F. R. (2012). Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. Journal of Applied Microbiology, 112(4), 660–671. DOI: 10.1111/j.1365-2672.2012.05242.x
dc.relationChen, Y. P., Liu, Q., Liu, Y. J., Jia, F. A. & He, X. H. (2014). Responses of soil microbial activity to cadmium pollution and elevated CO2. Scientific Reports, 4(4287). DOI: 10.1038/srep04287
dc.relationCheng, H., Zhang, X. & Song, H. (2014). Morphological Investigation of Calcium Carbonate during Ammonification-Carbonization Process of Low Concentration Calcium Solution. Journal of Nanomaterials, 503696. DOI: 10.1155/2014/503696
dc.relationChi, Y., Huang, Y., Wang, J., Chen, X., Chu, S., Hayat, K., Xu, Z., Xu, H., Zhou, P. & Zhang, D. (2020). Two plant growth promoting bacterial Bacillus strains possess different mechanisms in adsorption and resistance to cadmium. Science of the Total Environment, 741, 140422. DOI: 10.1016/j.scitotenv.2020.140422
dc.relationChoudhary, S., Islam, E., Kazy, S. & Sar, P. (2012). Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 47(4), 622-637. DOI: 10.1080/10934529.2012.650584
dc.relationChuo, S. C., Mohamed, S. F., Mohd, S. H., Ahmad, A., Jawaid, M., Wani, W. A., Yaqoob, A. A. & Ibrahim, M. N. (2020). Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials, 13(4993), 2020. DOI: 10.3390/ma13214993
dc.relationCoombs, J. M. & Barkay, T. (2004). Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Applied Environmental Microbiology, 70(3), 1698-1707. DOI: 10.1128/AEM.70.3.1698-1707.2004
dc.relationCoto, B., Martos, C., Peña, J. L., Rodríguez, R., & Pastor, G. (2012). Effects in the solubility of CaCO3: Experimental study and model description. Fluid Phase Equilibria, 324, 1–7. DOI: 10.1016/j.fluid.2012.03.020
dc.relationDas, S. & Dash, H. R. (2017). Handbook of metal-microbe interactions and bioremediation. Boca Raton: Taylor & Francis.
dc.relationDepartamento Administrativo Nacional de Estadística [DANE]. (2020). Encuesta Nacional Agropecuaria (ENA). Recuperada el 7 de junio de 2022 de https://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2019/boletin_ena_2019-I.pdf
dc.relationDiez-Marulanda, J. C. (2020). Aislamiento y discriminación molecular de microorganismos que inducen la precipitación de carbonato de cadmio de una región cacaotera de Colombia (Tesis de pregrado). Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia.
dc.relationDong, Y. & Zhu, H. (2005). Single-strand conformational polymorphism analysis: basic principles and routine practice. Methods in Molecular Medicine, 108, 149-157. DOI: 10.1385/1-59259-850-1:149
dc.relationDosanjh, N. S. & Michel, S. L. (2006). Microbial nickel metalloregulation: NikRs for nickel ions. Current Opinion in Chemical Biology, 10(2), 123–130. DOI:10.1016/j.cbpa.2006.02.011
dc.relationEuropean Commission. (2019). CADMIUM IN CHOCOLATE. Recuperado el 7 de junio de 2020 de https://ec.europa.eu/food/system/files/2019-03/cs_contaminants_catalogue_cadmium_chocolate_en.pdf
dc.relationFederación Nacional de Cacaoteros [FEDECACAO]. (2021). Economía Nacional. Recuperado el 7 de junio de 2022 de https://www.fedecacao.com.co/economianacional
dc.relationFrankel, R. B. & Bazylinski, D. A. (2003). Biologically Induced Mineralization by Bacteria. Reviews in Mineralogy and Geochemistry, 54(1), 95–114. DOI:10.2113/0540095
dc.relationGarvie, L., Németh, P. & Trif, L. (2022). An exceptionally stable and widespread hydrated amorphous calcium carbonate precipitated by the dog vomit slime mold Fuligo septica (Myxogastria). Scientific Reports, 12(3642). DOI: 10.1038/s41598-022-07648-9
dc.relationGonzález, S. & Ghneim-Herrera, T. (2021). Heavy Metals in Soils and the Remediation Potential of Bacteria Associated With the Plant Microbiome. Frontiers in Environmental Science, 9(604216). DOI: 10.3389/fenvs.2021.604216
dc.relationGuo, H., Hong, C., Xiao, M., Chen, X., Chen, H., Zheng, B., & Jiang, D. (2016). Real-time kinetics of cadmium transport and transcriptomic analysis in low cadmium accumulator Miscanthus sacchariflorus. Planta, 244(6), 1289–1302. DOI: 10.1007/s00425-016-2578-3
dc.relationHaddix, P. & Shanks, R. M. (2018). Prodigiosin pigment of Serratia marcescens is associated with increased biomass production. Archives of Microbiology, 200(7), 989-999. DOI: 10.1007/s00203-018-1508-0
dc.relationHall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., Davey, A. K., Chess-Williams, R., Kiefel, M. J., Arora, D., & Grant, G. D. (2016). Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins, 8(8), 236. DOI: 10.3390/toxins8080236
dc.relationHall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
dc.relationHaroun, A. A., Kamaluddeen, K. K., Alhaji, I., Magaji, Y. & Oaikhena, E. E. (2017). Evaluation of Heavy Metal Tolerance Level (MIC) and Bioremediation Potentials of Pseudomonas aeruginosa Isolated from Makera-Kakuri Industrial Drain in Kaduna. Nigeria. European Journal of Experimental Biology, 7(5). DOI: 10.21767/2248-9215.100028
dc.relationHuang, S., Liu, R., Sun, M., Li, X., Guan, Y. & Lian, B. (2022). Transcriptome expression analysis of the gene regulation mechanism of bacterial mineralization tolerance to high concentrations of Cd2+. Science of the Total Environment, 806(4), 150911. DOI: 10.1016/j.scitotenv.2021.150911
dc.relationJain, S. & Bhatt, A. (2014). Molecular and in situ characterization of cadmium-resistant diversified extremophilic strains of Pseudomonas for their bioremediation potential. 3 Biotech, 4(3), 297-304. DOI: 10.1007/s13205-013-0155-z
dc.relationJanda, J. M. & Abbott, S. L. (2007). 16S rRNA Gene Sequencing for Bacterial Identification in the Diagnostic Laboratory: Pluses, Perils, and Pitfalls. Journal of Clinical Microbiology, 45(9), 2761-2764. DOI: 10.1128/JCM.01228-07
dc.relationJebril, N., Boden, R. & Braungardt, C. (2022). Cadmium resistant bacteria mediated cadmium removal: a systematic review on resistance, mechanism and bioremediation approaches. IOP Conf. Series: Earth and Environmental Science, 1002, 012006. DOI: 10.1088/1755-1315/1002/1/012006
dc.relationJohnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E. & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(5029). DOI: 10.1038/s41467-019-13036-1
dc.relationKamika, I. & Momba, M. (2013). Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiology, 13(28). DOI: 10.1186/1471-2180-13-28
dc.relationKarelová, E., Harichová, J., Stojnev, T., Pangallo, D. & Ferianc, P. (2011). The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia, 1, 18-26. DOI: 10.2478/s11756-010-0145-0
dc.relationKhadim, H. J., Ammar, S. H. & Ebrahim, S. E. (2019). Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil. Environmental Technology & Innovation, 14, 100315. DOI: 10.1016/j.eti.2019.100315
dc.relationKhalid, S., Shahid, M., Khan, N., Murtaza, B., Bibi, I. & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182(part B), 247-268. DOI: 10.1016/j.gexplo.2016.11.021
dc.relationKhan, A. R., Park, G. S., Asaf, S., Hong, S. J., Jung, B. & Shin, J. H. (2017). Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants. PLoS One, 12(2), e0171534. DOI: 10.1371/journal.pone.0171534
dc.relationKhan, Z., Hussain, S., Rehman, A., Zulfiqar, S. & Shakoori, A. R. (2015). Evaluation of Cadmium Resistant Bacterium, Klebsiella pneumoniae, Isolated from Industrial Wastewater for its Potential Use to Bioremediate Environmental Cadmium. Pakistan Journal of Zoology, 47(6), 1533-1543.
dc.relationKhan, Z., Rehman, A., Hussain, S., Nisar, M. A., Zulfiqar, S. & Shakoori, A. R. (2016). Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent. AMB Express, 6(54). DOI: 10.1186/s13568-016-0225-9
dc.relationKinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A. & Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports, 10(8434). DOI: 10.1038/s41598-020-65359-5
dc.relationKonstantinou, C., Wang, Y., Biscontin, G. & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Scientific Reports, 11(6161). DOI: 10.1038/s41598-021-85712-6
dc.relationKumar, P., Gupta, S. B., Anurag. & Soni, R. (2019). Bioremediation of Cadmium by Mixed Indigenous Isolates Serratia liquefaciens BSWC3 and Klebsiella Pneumoniae RpSWC3 Isolated from Industrial and Mining Affected Water Samples. Pollution, 5(2), 351-360. DOI: 10.22059/poll.2018.268603.533
dc.relationKumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547-1549. DOI: 10.1093/molbev/msy096
dc.relationKumari, D., Pan, X., Lee, D. & Achal, V. (2014). Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature. International Biodeterioration & Biodegradation, 94, 98-102. DOI: 10.1016/j.ibiod.2014.07.007
dc.relationLi, W., Liu, L., Chen, W., Yu, L., Li, W. & Yu, H. (2010). Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochemistry, 45(6), 1017-1021. DOI: 10.1016/j.procbio.2010.03.004
dc.relationLin, X., Mou, R., Cao, Z., Xu, P., Wu, X., Zhu, Z. & Chen, M. (2016). Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Science of the Total Environment, 569-570, 97-104. DOI: 10.1016/j.scitotenv.2016.06.121
dc.relationLiu, Y., Xiao, T., Perkins, R. B., Zhu, J., Zhu, Z., Xiong, Y. & Ning, Z. (2017a). Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176, 42-49. DOI: 10.1016/j.gexplo.2016.04.004
dc.relationLiu, X., Zhang, Q., Zhou, N. & Tian, Y. (2017b). Expression of an Acid Urease with Urethanase Activity in E. coli and Analysis of Urease Gene. Molecular Biotechnology, 59(2-3), 84–97. DOI:10.1007/s12033-017-9994-x
dc.relationLu, M., Jiao, S., Gao, E., Song, X., Li, Z., Hao, X., Rensing, C. & Wei, G. (2017). Transcriptome response to heavy metals in Sinorhizobium melitoli CCNWSX0020 reveals new metal resistance determinants that also promote bioremediation by Medicago lupulina in metal-contaminated soil. Applied and Environmental Microbiology, 83(20), e01244-17. DOI: 10.1128/AEM.01244-17
dc.relationMaynaud, G., Brunel, B., Mornico, D., Durot, M., Severac, D., Dubois, E., Navarro, E., Cleyet-Marel, J. C. & Le Quéré, A. (2013). Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to inc and Cadmium exposure”, BMC Genomics, 14(292). DOI: 10.1186/1471-2164-14-292
dc.relationMéndez, V., Fuentes, S., Morgante, V., Hernández, M., González, M., Moore, E. & Seeger, M. (2017). Novel hydrocarbonoclastic metal-tolerant Acinetobacter and Pseudomonas strains from Aconcagua river oil-polluted soil. Journal of Soil Science and Plant Nutrition, 17(4). DOI: 10.4067/S0718-95162017000400017
dc.relationMeter, A., Atkinson, R. J. & Laliberte, B. (2019). Cadmium in cacao from Latin America and the Caribbean: A review of research and potential mitigation solutions. Rome (Italy): Bioversity International.
dc.relationMondal, S. & Ghosh, A. (2019). Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Construction and Building Materials, 225, 67–75. DOI:10.1016/j.conbuildmat.2019.07.122
dc.relationMontaño-Salazar, S. M., Lizarazo-Marriaga, J. & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75, 256-265. DOI: 10.1007/s00284-017-1373-0
dc.relationMontoya, C., Márquez, M. A., López, J. M. & Cuervo, C. (2005). Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis. Revista Colombiana de Biotecnología, 7(2), 19-25.
dc.relationNascimento, F. F., dos Reis, M. & Yang, Z. (2017). A biologist’s guide to Bayesian phylogenetic analysis. Nature Ecology & Evolution, 1(10), 1446-1454. DOI: 10.1038/s41559-017-0280-x
dc.relationNaz, N., Young, H., Ahmed, N. & Gadd, G. (2005). Cadmium Accumulation and DNA Homology with Metal Resistance Genes in Sulfate-Reducing Bacteria. Applied and Environmental Microbiology, 71(8), 4610-4618. DOI: 10.1128/AEM.71.8.4610–4618.2005
dc.relationNguyen, C., Hugie, C., Kile, M. & Navab-Daneshmand, T. (2019). Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review. Frontiers of Environmental Science & Engineering, 13(46). DOI: 10.1007/s11783-019-1129-0
dc.relationNies, D. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2-3), 313-339. DOI: 10.1016/S0168-6445(03)00048-2
dc.relationNongkhlaw, M. & Joshi, S. R. (2019). Molecular insight into the expression of metal transporter genes in Chryseobacterium sp. PMSZPI isolated from uranium deposit. PLoS ONE, 14(5), e0216995. DOI: 10.1371/journal.pone.0216995
dc.relationOger, C., Mahillon, J. & Petit, F. (2003). Distribution and diversity of a cadmium resistance (cadA) determinant and occurrence of IS257 insertion sequences in Staphylococcal bacteria isolated from a contaminated estuary (Seine, France). FEMS Microbiology Ecology, 43(2), 173-183. DOI: 10.1111/j.1574-6941.2003.tb01056.x
dc.relationOmoregie, A., Palombo, E. A. & Nissom, P. M. (2020). Bioprecipitation of calcium carbonate mediated by ureolysis: A review. Environmental Engineering Research, 26(6). DOI: 10.4491/eer.2020.379
dc.relationPeker, N., Garcia-Croes, S., Dijkhuizen, B., Wiersma, H. H., van Zanten, E., Wisselink, G., Friedrich, A. W., Kooistra-Smid, M., Sinha, B., Rossen, J. W. A. & Couto, N. (2019). A Comparison of Three Different Bioinformatics Analyses of the 16S–23S rRNA Encoding Region for Bacterial Identification. Frontiers in Microbiology, 10(620). DOI: 10.1128/JCM.01228-07
dc.relationR Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
dc.relationRahman, M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, R. & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15). DOI: 10.3390/su12156281
dc.relationRajasekar, A., Wilkinson, S. & Moy, C. (2021). MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environmental Science and Ecotechnology, 6(100096). DOI: 10.1016/j.ese.2021.100096
dc.relationRStudio Team (2022). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/.
dc.relationRoosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G. & Gillan, D. (2014). Bacterial metal resistance genes and metal bioavailability in contaminated sediments. Environmental Pollution, 189, 143-151. DOI: 10.1016/j.envpol.2014.02.031
dc.relationSandaa, R. A., Torsvik, V., Enger, Ø., Daae, F. L., Castberg, T. & Hahn, D. (1999). Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 30(3), 237-251. DOI:10.1111/j.1574-6941.1999.tb00652.x
dc.relationSanders, E. & Miller, K. (2010). I, Microbiologist: A discovery-based course in microbial ecology and molecular evolution. Washington D. C.: ASM Press.
dc.relationSchmittgen, T. & Livak, K. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. DOI: 10.1038/nprot.2008.73
dc.relationSharma, S., Tiwari, S., Hasan, A., Saxena, V. & Pandey, L. M. (2018). Recent advances in conventional and contemporary methods for remediation of heavy metal‑contaminated soils. 3 Biotech, 8(16), 1-18. DOI: 10.1007/s13205-018-1237-8
dc.relationSimmons, M. P., Pickett, K. M. & Miya, M. (2004). How Meaningful Are Bayesian Support Values?. Molecular Biology and Evolution, 21(1), 188-199. DOI: 10.1093/molbev/msh014
dc.relationSkoog, D. A., West, D. M., Holler, F. J. & Crouch, S. R. (2014). Fundamentals of analytical chemistry (9na ed). Belmont: Brooks/Cole.
dc.relationSkrodenyte-Arbaciauskiene, V., Radziute, S., Stunzenas, V. & Buda, V. (2012). Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut”. International Journal of Systematic and Evolutionary Microbiology, 62, 942-948. DOI: 10.1099/ijs.0.030304-0
dc.relationSreedevi, P. R., Suresh, K. & Jiang, G. (2022). Bacterial bioremediation of heavy metals in wastewater: A review of processes and applications. Journal of Water Process Engineering, 48, 102884. DOI: 10.1016/j.jwpe.2022.102884
dc.relationStewart, F. J., Young, C. R. & Cavanaugh, C. M. (2008). Lateral Symbiont Acquisition in a Maternally Transmitted Chemosynthetic Clam Endosymbiosis. Molecular Biology and Evolution, 25(4), 673-687. DOI: 10.1093/molbev/msn010
dc.relationSu, J., Gao, Y., Huang, T., Bai, X., Lu, J. & He, L. (2019). Simultaneous removal of Cd2+, NO3-N and hardness by the bacterium Acinetobacter sp. CN86 in aerobic conditions. Bioprocess and Biosystems Engineering, 42(69), 1333-1342. DOI: 10.1007/s00449-019-02132-7
dc.relationSuchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J. & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1), vey016. DOI: 10.1093/ve/vey016
dc.relationTamayo-Figueroa, D. P., Castillo, E. & Brandão, P. F. B. (2019). Metal and metalloid immobilization by microbiologically induced carbonates precipitation. World Journal of Microbiology and Biotechnology, 35(58). DOI: 10.1007/s11274-019-2626-9
dc.relationTavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequence. Lectures on Mathematics in the Life Sciences, 17, 57-86.
dc.relationThompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. DOI: 10.1093/nar/22.22.4673
dc.relationVidhyaparkavi, A., Osborne, J. & Babu, S. (2017). Analysis of zntA gene in environmental Escherichia coli and additional implications on its role in zinc translocation. 3 Biotech, 7(9). DOI: 10.1007/s13205-017-0613-0
dc.relationWang, Y. Y., Yao, Q. Z., Zhou, G. T. & Fu, S. Q. (2015). Transformation of amorphous calcium carbonate into monohydrocalcite in aqueous solution: a biomimetic mineralization study. European Journal of Mineralogy, 27, 717-729. DOI: 10.1127/ejm/2015/0027-2486
dc.relationWinz, M. L., Cahová, H., Nübel, G., Frindert, J., Höfer, K. & Jäschke, A. (2017). Capture and sequencing of NAD-capped RNA sequences with NAD captureSeq. Nature Protocols, 12, 122-149. DOI: 10.1038/nprot.2016.163
dc.relationXie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology, 80(1), 75-84. DOI: 10.1007/s11103-012-9885-2
dc.relationYang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution, 11(9), 367-372. DOI: 10.1016/0169-5347(96)10041-0
dc.relationYao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environmental Sciences, 16, 722–729. DOI: 10.1016/j.proenv.2012.10.099
dc.relationYe, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. & Madden, T. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13(134). DOI: 10.1186/1471-2105-13-134
dc.relationYu, H., Zhang, G., Cai, Y. & Dong, F. (2021). Altering the substituents of salicylic acid to improve Berthelot reaction for ultrasensitive colorimetric detection of ammonium and atmospheric ammonia. Analytical and Bioanalytical Chemistry, 413, 5695-5702. DOI: 10.1007/s00216-021-03485-3
dc.relationYun, J., Heisler, L., Hwang, I., Wilkins, O., Lau, S., Hyrcza, M., Jayabalasingham, B., Jin, J., McLaurin, J., Tsao, M. & Der, S. (2006). Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Research, 34(12), e85. DOI: 10.1093/nar/gkl400
dc.relationZaghloul, A. & Saber, M. (2019). Modern Technologies in Remediation of Heavy Metals in Soils. International Journal of Environmental Pollution & Environmental Modelling, 2(1), 10-19.
dc.relationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. Journal of Applied Crystallography, 52, 918-925. DOI: 10.1107/S160057671900997X
dc.relationZhang, Y., Zhang, H., Li, X., Su, Z. & Zhang, C. (2008). The cadA Gene in Cadmium-Resistant Bacteria from Cadmium-Polluted Soil in the Zhangshi Area of Northeast China. Current Microbiology, 56(3), 236-239. DOI: 10.1007/s00284-007-9064-x
dc.relationZhao, Y., Yao, J., Yuan, Z., Wang, T., Zhang, Y. & Wang, F. (2016). Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation. Environmental Science and Pollution Research, 24(1), 372-380. DOI: 10.1007/s11356-016-7810-y
dc.relationZhao, X., Wang, M., Wang, H., Tang, D., Huang, J. & Sun, Yu. (2019). Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria. International Journal of Environmental Research and Public Health, 16(268). DOI: 10.3390/ijerph16020268
dc.relationZheng, X., Chen, L., Chen, M., Chen, J., & Li, X. (2019). Functional Metagenomics to Mine Soil Microbiome for Novel Cadmium Resistance Genetic Determinants. Pedosphere, 29(3), 298–310. DOI:10.1016/s1002-0160(19)60804-0
dc.relationZheng, Y., Xiao, C. & Chi, R. (2021). Remediation of soil cadmium pollution by biomineralization using microbial‑induced precipitation: a review. World Journal of Microbiology and Biotechnology, 37(208), 1-15. DOI: 10.1007/s11274-021-03176-2
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio de la bioprecipitación de cadmio por bacterias ureolíticas aisladas de fincas cacaoteras de Santander, Colombia
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución