dc.contributorBetancourt Lopez, Liliana Lucia
dc.contributorGomez, Arlen Patricia
dc.contributorAyni - Grupo de Investigación en Procesos Agroindustriales
dc.contributorCarvajal, Loren 0000000303139297
dc.contributorhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000133532
dc.creatorCarvajal Diaz, Loren Milena
dc.date.accessioned2023-07-28T20:53:51Z
dc.date.accessioned2023-08-25T14:14:32Z
dc.date.available2023-07-28T20:53:51Z
dc.date.available2023-08-25T14:14:32Z
dc.date.created2023-07-28T20:53:51Z
dc.date.issued2023-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84371
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8427073
dc.description.abstractl propóleo es un producto extraído de las colmenas de abejas, ampliamente estudiado por las diferentes funciones bioactivas y por los reportes que mencionan que su consumo ayuda al fortalecimiento del sistema inmune. El objetivo de esta investigación fue evaluar el efecto de la inclusión de extracto de propóleo en la dieta de gallinas ponedoras sobre los parámetros zootécnicos, la calidad de huevo y la morfometría en intestino y sistema reproductivo en gallinas ponedoras. Un total de 240 gallinas ponedoras de la línea Hy- Line de 26 semanas de edad se distribuyeron en 5 tratamientos: un control negativo con dieta basal sin ningún aditivo (T1), un control positivo con dieta basal adicionada con 55 mg de bacitracina de zinc (BMD) / kg de alimento (T2) y tres tratamientos con adición de 300 (T3), 600 (T4) y 900 (T5) mg de extracto etanolico de propóleo (EEP) / kg de alimento. Se determinó el perfil de compuestos de propóleo proveniente de dos municipios de Cundinamarca, La Mesa y Anolaima por la técnica de cromatografía de gases acoplada a masas y cromatografía líquida de ultra-alta resolución con detector de masas Obitrap (UHPLC-ESI+-Obitrap-MS); posteriormente se tomaron registros productivos en las aves durante 8 semanas. Se evaluaron parámetros productivos y de calidad de huevo, así como parámetros morfométricos y y posibles hallasgoz patológicos asociados a integridad intestinal y del tracto reproductivo (oviducto y útero) y cuadro hemático. Hubo diferencias en el perfil de compuestos identificados en las muestras de propóleo de los dos orígenes; mientras que en el propóleo de La Mesa el metabolito de mayor abundancia relativa fue el ácido cafeico con 11.6%, en la muestra de Anolaima, el lupeol fue el metabolito más abundante con 14.4%. Hubo un impacto en el peso de las gallinas cuando se incluyó un 3% de frijol soya crudo en la dieta como desafío nutricional. La reducción de peso corporal en las aves suplementadas con propóleo fue inferior respecto a las aves de los grupos control positivo y negativo, con 91, 48 y 121 para T3, T4 y T5 vs 182 g en T1 (P<0.05). Tanto el porcentaje de postura como el número de huevos ave alojada fueron superiores en los grupos suplementados con extracto de propóleo respecto al grupo control suplementado con antibiótico (T2) (P<0.05). En cuanto a la calidad de huevo, se presentó un mayor valor en la fuerza de ruptura de la cáscara para los tratamientos con las dosis más altas de propóleo (P<0,05) (T4 - 600mg y T5 - 900mg de EEP/kg de alimento). En el análisis de micrometría intestinal del duodeno, el grupo T3 generó mayor ancho de las vellosidades (P<0,05); en yeyuno se presentó mayor ancho de las criptas con el nivel T4 y en profundidad de las criptas el grupo 2 con BMD presentó el mayor valor (P<0.05). En tracto reproductivo la altura del pliego y ancho del cilio fue mayor para con las dosis más altas de propóleo (T4 600 y T5 900); sin embargo, no se presentaron diferencias significativas entre los tratamientos (p>0,05). Los propóleos provenientes de La mesa y Anolaima son altos en terpenos y presentaron un potencial como aditivo nutracéutico en la dieta para gallinas ponedoras en las dosis de 600 mg de EEP/ kg de alimento. (Texto tomado de la fuente)
dc.description.abstractPropolis is a product extracted from bee hives, it has been widely studied for its different bioactive functions, especially due to reports that its consumption helps strengthen the immune system. The objective of this research was to evaluate the effect of the inclusion of propolis extract in the diet of laying hens on zootechnical parameters, egg quality and morphometry in the intestine and reproductive system in laying hens. A total of 240 laying hens of the Hy-Line line of 26 weeks of age were distributed in 5 treatments; a negative control with a basal diet without any additives (T1), a positive control with a basal diet added with 55 mg of BMD (zinc bacitracin) / kg of food (T2) and three treatments with the addition of propolis at levels of 300 (T3 ), 600 (T4) and 900 (T5) mg EEP/kg feed. The profile of propolis compounds from two municipalities of Cundinamarca, La Mesa and Anolaima was determined by the technique of gas chromatography coupled to masses and ultra-high resolution liquid chromatography with Obitrap mass detector (UHPLC-ESI+-Obitrap-MS ); Subsequently, productive records were taken in the birds for 8 weeks. Productive and egg quality parameters were evaluated, as well as morphometric and pathological parameters associated with intestinal integrity and reproductive tract (oviduct and uterus) and blood count. There were differences in the profile of compounds identified in the propolis samples from the two origins, while in the La Mesa propolis, the metabolite with the highest relative abundance was caffeic acid with 11.6%, in the Anolaima sample, Lupeol was the most abundant metabolite with 14.4%. There was an impact on the weight of the hens when 3% raw soybeans were included in the diet, the reduction in body weight in the birds supplemented with propolis was lower compared to the birds of the positive and negative control groups, with 91, 48 and 121 for T3, T4 and T5 vs 182 g in T1 (P<0.05). Both the laying percentage and the number of bird eggs housed were higher in the groups supplemented with propolis extract compared to the control group supplemented with antibiotic (P<0.05). Regarding egg quality, there was a higher value in the breaking force of the shell for the treatments with the highest doses of propolis (P<0.05) (T4 600mg and T5 900mg of EEP/kg of food ). In the intestinal micrometry analysis of the duodenum, the T3 group generated greater width of the villi (P<0.05); in jejunum there was a higher value in the depth of the crypts with the T4 level and in the depth of the crypts group 2 with BMD presented the highest value (P<0.05). In the reproductive tract, the height of the fold and the width of the cilium were greater for the highest doses of propolis (T4 600 and T5 900); however, there were no significant differences between the treatments (P>0.05). Propolis from La Mesa and Anolaima are high in terpenes and have potential as a nutraceutical additive in the diet for laying hens at doses of 600mg of EEP/kg of feed.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.publisherFacultad de Medicina Veterinaria y de Zootecnia
dc.publisherBogotá,Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAtanasov, A. G., Zotchev, S. B., Dirsch, V. M., Orhan, I. E., Banach, M., Rollinger, J. M., Barreca, D., Weckwerth, W., Bauer, R., Bayer, E. A., Majeed, M., Bishayee, A., Bochkov, V., Bonn, G. K., Braidy, N., Bucar, F., Cifuentes, A., D’Onofrio, G., Bodkin, M., ... Supuran, C. T. (2021). Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
dc.relationBezerra, W. G. A., Silva, I. N. G., Teixeira, R. S. C., Lopes, E. S., Albuquerque, Á. H., & Cardoso, W. C. (2017). Antibióticos no setor avícola: uma revisão sobre a resistência microbiana. Archivos de Zootecnia, 66(254), 301–307. https://www.uco.es/ucopress/az/index.php/az/article/view/2335/1548
dc.relationZafarnejad, K., Afzali, N., & Rajabzadeh, M. (2017). Effect of bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research, 2119, 1–6. https://doi.org/10.1080/09712119.2016.1174130
dc.relationAijaz Mohd, Keserwani Nishith, Yusuf Mohd, Haque Ansari Nizamul, Usha Ruhinaz l, Kalia Pankaj (2023). Chemical, Biological, and Pharmacological Prospects of Caffeic Acid. Biointerface research in applied chemistry. ISSN 2969-5837. Volume 13, Issue 4, 2023, 324. https://doi.org/10.33263/BRIAC134.324.
dc.relationAlvear, M., Santos, E., Cabezas, F., Pérez-Sanmartín, A., Lespinasse, M., & Veloz, J. (2021). Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of chilean propolis. Plants, 10(8). https://doi.org/10.3390/plants10081543.
dc.relationCepero Briz, R. (2008). Retirada de los antibióticos promotores del crecimiento en la Unión Europea: Causas y consecuencias. XII Congreso Bienal de La Asociación Mexicana de Especialistas En Nutrición Avícola (AMENA) Facultad de Veterinaria Universidad Zaragoza, 1–46.
dc.relationCollignon, P. (2009). The use of antibiotics in food production animals ; does this cause human health problems ? RSPCA Australia Scientific Seminar, 1–11.
dc.relationDutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A., Cole, L., Daignault, D., Desruisseau, A., Demczuk, W., Hoang, L., Horsman, G. B., Ismail, J., Jamieson, F., Maki, A., Pacagnella, A., & Pillai, D. R. (2010). Ceftiofur Resistance in Salmonella enterica Serovar Heidelberg from Chicken Meat and Humans , Canada. 16(1). https://doi.org/10.3201/eid1601.090729
dc.relationHuyghebaert, G., Ducatelle, R., & Immerseel, F. Van. (2011). An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal, 187(2), 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003
dc.relationOrsi, R., Funari, S. R. C., Soares, A. M. V. C., Calvi, S. A., Oliviera, S. L., Sforcin, J. M., & Bankova, V. (2000). Immunomodulatory action of propolis on macrophage activation. Journal of Venomous Animals and Toxins, 6(2), 205–219. https://doi.org/10.1590/S0104-79302000000200006
dc.relationSpellberg, B., Hansen, G. R., Kar, A., Cordova, C. D., Price, L. B., & Johnson, J. R. (2016). Antibiotic Resistance in Humans and Animals.
dc.relationSugiharto, S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 15(2), 99–111. https://doi.org/10.1016/j.jssas.2014.06.001
dc.relationAbdel-Kareem, A. A. A., & El-Sheikh, T. M. (2017). Impact of supplementing diets with propolis on productive performance, egg quality traits and some haematological variables of laying hens. Journal of Animal Physiology and Animal Nutrition, 101(3), 441–448. https://doi.org/10.1111/jpn.12407
dc.relationAmoros, M., Simõs, C. M. O., Girre, L., Sauvager, F., & Cormier, M. (1992). Synergistic effect of flavones and flavonols against herpes simplex virus Type 1 in cell culture. Comparison with the antiviral activity of propolis. Journal of Natural Products, 55(12), 1732–1740. https://doi.org/10.1021/np50090a003
dc.relationAparecida Souza Machado, B., Pina Dantas Silva, R., de Abreu Barreto, G., Serra Costa, S., Figuerêdo da Silva, D., Neves Brandão, H., Luiz Carneiro da Rocha, J., Antônio Dellagostin, O., Antônio Pegas Henriques, J., Andres Umsza-Guez, M., & Ferreira Padilha, F. (2016). Chemical Composition and Biological activity of extracts obtained by supercritical extraction and ethanolic extraction ofbBrown, green and red Propolis derived from different geographic regions in Brazil. https://doi.org/10.1371/journal.pone.0145954
dc.relationArpášová, H., Haščík, P., Pistová, V., Mellen, M., Gálik, B., & Fik, M. (2016). The Effect of propolis extract on internal quality parameters of table eggs. In Scientific Papers: Animal Science and Biotechnologies (Issue 2). https://www-cabdirect org.ezproxy.unal.edu.co/cabdirect/FullTextPDF/2017/20173012631.pdf
dc.relationBankova, V., Bertelli, D., Borba, R., Conti, B. J., da Silva Cunha, I. B., Danert, C., Eberlin, M. N., I Falcão, S., Isla, M. I., Moreno, M. I. N., Papotti, G., Popova, M., Santiago, K. B., Salas, A., Sawaya, A. C. H. F., Schwab, N. V., Sforcin, J. M., Simone-Finstrom, M., Spivak, M., ... Zampini, C. (2016). Standard methods for Apis mellifera propolis research. Journal of Apicultural Research, 1–49. https://doi.org/10.1080/00218839.2016.1222661
dc.relationBankova, V., Popova, M., & Trusheva, B. (2016). New emerging fields of application of propolis. Macedonian Journal of Chemistry and Chemical Engineering, 35(1), 1. https://doi.org/10.20450/mjcce.2016.864
dc.relationBankova, V., Trusheva, B., & Popova, M. (2021). Propolis extraction methods: a review. Journal of Apicultural Research, 0(0), 1–10. https://doi.org/10.1080/00218839.2021.1901426
dc.relationBezerra, W. G. A., Silva, I. N. G., Teixeira, R. S. C., Lopes, E. S., Albuquerque, Á. H., & Cardoso, W. C. (2017). Antibióticos no setor avícola: uma revisão sobre a resistência microbiana. Archivos de Zootecnia, 66(254), 301–307. https://www.uco.es/ucopress/az/index.php/az/article/view/2335/1548
dc.relationBrown, K., Uwiera, R. R. E., Kalmokoff, M. L., Brooks, S. P. J., & Inglis, G. D. (2017). Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives. International Journal of Antimicrobial Agents, 49(1), 12–24. https://doi.org/10.1016/j.ijantimicag.2016.08.006
dc.relationCadena productiva De las abejas y apicultura., & Minagricultura. (2018). Cadena productiva de las abejas y apicultura & quot; cifras sectoriales de 2018&quot; https://drive.google.com/file/d/1-Hz6b0GwziQMKzWb2FA6J8lvF1BRXw1Z/view
dc.relationÇelemli, Ö. G. (2012). Pot-Honey. In P. Vit, S. R. P. M., & D. Roubik. (Eds.), Pot-Honey (pp. 525–528). SpringerLink (Online service).
dc.relationCepero Briz, R. (2008). Retirada de los antibióticos promotores del crecimiento en la Unión Europea: Causas y consecuencias. XII Congreso Bienal de La Asociación Mexicana de Especialistas En Nutrición Avícola (AMENA) Facultad de Veterinaria Universidad Zaragoza, 1–46.
dc.relationÇetin, E., Silici, S., Çetin, N., & Güçlü B. K. (2010). Effects of diets containing different concentrations of propolis on hematological and immunological variables in laying hens. Poultry Science, 89(8), Pages 1703–1708.
dc.relationChoi, J. H., Kim, G. B., & Cha, C. J. (2014). Spatial heterogeneity and stability of bacterial community in the gastrointestinal tracts of broiler chickens. Poultry Science, 93(8), 1942–1950. https://doi.org/10.3382/ps.2014-03974
dc.relationCollignon, P. (2009). The use of antibiotics in food production animals; does this cause human health problems? RSPCA Australia Scientific Seminar, 1–11.
dc.relationCuesta-Rubio, O., Piccinelli, A. L., Fernandez, M. C., Hernández, I. M., Rosado, A., & Rastrelli, L. (2007). Chemical characterization of Cuban propolis by HPLC-PDA, HPLC-MS, and NMR: The brown, red, and yellow Cuban varieties of propolis. Journal of Agricultural and Food Chemistry, 55(18), 7502–7509. https://doi.org/10.1021/jf071296w
dc.relationCunha, M. G., Franchin, M., Galvão, L. C. C., Ruiz, A. L. T. G. de, Carvalho, J. E. de, Ikegaki, M., Alencar, S. M. de, Koo, H., & Rosalen, P. L. (2013). Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complementary and Alternative Medicine, 13(1), 23. https://doi.org/10.1186/1472- 6882-13-23
dc.relationDenli, M., Cankaya, S., Silici, S., Okan, F., & Uluocak, A. N. (2005). Effect of dietary addition of turkish propolis on the growth performance, carcass characteristics and serum variables of quail (Coturnix coturnix japonica). 848–854.
dc.relationDimov, V., Manolova, I. N., Bankova, V., Nikolov, N., & Popov, S. (1991). Immunomodulatory action of propolis. Influence on anti-infectious protection and macrophage function. Apidologie, 22, 160–162. https://www.apidologie.org/articles/apido/pdf/1991/02/Apidologie_0044- 8435_1991_22_2_ART0008.pdf
dc.relationDomingo, I. (2015). Influencia de la integridad intestinal sobre el rendimiento y rentabilidad aviares.
dc.relationFarré, Frasquet, & Sánchez. (2004). Propolis and human health. Ars Pharmaceutica, 45(1), 21–43.
dc.relationFarrell, D. (2013). Poultry Development: The nutritional benefits of chicken meat compared with other meats. In The role of poultry in human nutrition (FAO 2013).
dc.relationFenavi. (2022). Avicultores.
dc.relationFreitas, J., Vanat, N., Pinheiro, J., Balarin, M., Sforcin, J., & Venanci, E. (2011). The effects of propolis on antibody production by laying hens. Poultry Science, 90(6), 1227–1233. https://doi.org/https://doi.org/10.3382/ps.2010-01315
dc.relationGalal, A., & Zaki, T. G. (2008). Productive Performance and immune response of laying hens as affected by dietary propolis supplementation. International Journal of Poultry Science, 7(3), 272–278.
dc.relationGálvez, C. F., Benavides, G. F. R., & Osorio, J. (2009). El laboratorio clínico en hematología de aves exóticas. Biosalud, 8(ISSN 1657-9550), 2–6.
dc.relationGarnica, D. S. (2005). Guía ambiental apícola. Biocomercio Sostenible, 91.
dc.relationGarrett, W. S., Gordon, J. I., & Glimcher, L. H. (2010). Homeostasis and inflammation in the intestine. Cell, 140(6), 859–870. https://doi.org/10.1016/j.cell.2010.01.023
dc.relationGil, J., Durango, D., Rojano, B., & Marin, J. (Eds.). (2013). Antioxidant activity and Chemical composition of Colombian propolis. In Natural Antioxidants and Biocides from Wild Medicinal Plants (CABI, pp. 95–97).
dc.relationGonzález, N., & Barbeito, C. G. (2014). Histología de las Aves (primera). Universidad nacional de la plata. www.editorial.unlp.edu.ar
dc.relationHafez, H. M., & Attia, Y. A. (2020). Challenges to the poultry industry: Current perspectives and strategic future after the COVID-19 Outbreak. Frontiers in Veterinary Science, 7(August). https://doi.org/10.3389/fvets.2020.00516
dc.relationHassan, M. M., El Zowalaty, M. E., Lundkvist, Å., Järhult, J. D., Khan Nayem, M. R., Tanzin, A. Z., Badsha, M. R., Khan, S. A., & Ashour, H. M. (2021). Residual antimicrobial agents in food originating from animals. Trends in Food Science and Technology, 111(January), 141–150. https://doi.org/10.1016/j.tifs.2021.01.075
dc.relationHossain, R., Quispe, C., Khan, R. A., Saikat, A. S. M., Ray, P., Ongalbek, D., Yeskaliyeva, B., Jain, D., Smeriglio, A., Trombetta, D., Kiani, R., Kobarfard, F., Mojgani, N., Saffarian, P., Ayatollahi, S. A., Sarkar, C., Islam, M. T., Keriman, D., Uçar, A., ... Cho, W. C. (2022). Propolis: An update on its chemistry and pharmacological applications. Chinese Medicine, 17(1). https://doi.org/10.1186/s13020-022-00651-2
dc.relationHughes, P., & Heritage, J. (2004). Antibiotic growth-promoters in food animals. In assessing quality and safety of animal feeds. In FAO.
dc.relationHuyghebaert, G., Ducatelle, R., & Immerseel, F. Van. (2011). An update on alternatives to antimicrobial growth promoters for broilers. Veterinary Journal, 187(2), 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003
dc.relationJaramillo-Colorado, B., Duarte-Restrepo, E., & Jaimes, L. (2016). Bioactividad del aceite esencial de Croton trinitatis Millsp colombiano. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromaticas, 15(4), 249–257.
dc.relationKačániová, M., Rovná, K., Arpášová, H., Čuboň, J., Hleba, L., Pochop, J., Kunová, S., & Haščík, P. (2012). In vitro and in vivo antimicrobial activity of propolis on the microbiota from gastrointestinal tract of chickens. Journal of Environmental Science & Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 47(11), 1665–1671. https://doi.org/10.1080/10934529.2012.687248
dc.relationKalpana, P., & Srinivasan, K. (2004). Digestive stimulant action of spices.pdf (pp. 167– 169).
dc.relationKlis, van der, & Jansman. (2002). Salud intestinal ajuste de dietas. http://www.wpsa- aeca.es/aeca_imgs_docs/wpsa1176982877a.pdf
dc.relationKumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 1–17.
dc.relationLenhardt, & Moze. (2003). Morphological and functional changes of the small intestine in growth-stunted broilers. ACTA VET. BRNO, 72, 353–358. http://www.vfu.cz/acta- vet/actavet.htm
dc.relationMarcucci, M. C. (1995). Propolis: chemical composition, biological properties and therapeutic activity. Apidologie, 26(2), 83–99. https://doi.org/10.1051/apido:19950202
dc.relationMárquez Hernández, I., Campo Fernández, M., Cuesta-Rubio, O., Piccinelli, A. L., & Rastrelli, L. (2005). Polyprenylated benzophenone derivatives from Cuban propolis. Journal of Natural Products, 68(6), 931–934. https://doi.org/10.1021/np0495884
dc.relationMartínez, J., Garcia, C., Durango, D., & Gil, J. (2012). Caracterización de propóleos provenientes del municipio de Caldas obtenido por dos métodos de recolección Characterization of propolis from municipality of Caldas obtained through two collection methods. 17(1), 2861–2869.
dc.relationMonzote, L., Cuesta-Rubio, O., Fernandez, M. C., Hernandez, I. M., Fraga, J., Pérez, K., Kerstens, M., Maes, L., & Cos, P. (2012). In vitro antimicrobial assessment of Cuban propolis extracts. Memories Do Instituto Oswaldo Cruz, 107(8), 978–984. https://doi.org/10.1590/S0074-02762012000800003
dc.relationNesporova, K., Valcek, A., Papagiannitsis, C., Kutilova, I., Jamborova, I., Davidova- Gerzova, L., Bitar, I., Hrabak, J., Literak, I., & Dolejska, M. (2021). Multi-drug resistant plasmids with esbl/ampc and mcr-5.1 in paraguayan poultry farms: The linkage of antibiotic resistance and hatcheries. Microorganisms, 9(4). https://doi.org/10.3390/microorganisms9040866
dc.relationOrsi, R., Funari, S. R. C., Soares, A. M. V. C., Calvi, S. A., Oliviera, S. L., Sforcin, J. M., & Bankova, V. (2000). Immunomodulatory action of propolis on macrophage activation. Journal of Venomous Animals and Toxins, 6(2), 205–219. https://doi.org/10.1590/S0104-79302000000200006
dc.relationPapotti, G., Bertelli, D., Bortolotti, L., & Plessi, M. (2012). Chemical and functional characterization of Italian propolis obtained by different harvesting methods. Journal of Agricultural and Food Chemistry, 60(11), 2852–2862. https://doi.org/10.1021/jf205179d
dc.relationPieroni, C. A., de Oliveira, M. C., dos Santos, W. L. R., Mascarenhas, L. B., & Oliveira, M. A. D. (2020). Effect of green propolis on the productivity, nutrient utilization, and intestinal morphology of Japanese laying quail. Revista Brasileira de Zootecnia, 49. https://doi.org/10.37496/RBZ4920190198
dc.relationPotten, C. S. (1998). Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1370), 821–830. https://doi.org/10.1098/rstb.1998.0246
dc.relationPrakatur, I., Miškulin, I., Senčić, Đ., Pavić, M., Miškulin, M., Samac, D., Galović, D., & Domaćinović, M. (2020). The influence of propolis and bee pollen on chicken meat quality. Veterinarski Arhiv, 90(6), 617–625. https://doi.org/10.24099/vet.arhiv.0888
dc.relationRamiírez, I., Cruz, A., & Martínez, P. (2015). Propóleos En Aves-Pollos De Engorde- Y Sus Perspectivas Clínicas En Salud Animal. 1–7.
dc.relationRipari, N., Sartori, A. A., da Silva Honorio, M., Conte, F. L., Tasca, K. I., Santiago, K. B., & Sforcin, J. M. (2021). Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. The Journal of Pharmacy and Pharmacology, 73(3), 281–299. https://doi.org/10.1093/jpp/rgaa067
dc.relationRocha, C., Durau, J. F., Barrilli, L. N. E., Dahlke, F., Maiorka, P., & Maiorka, A. (2014). The effect of raw and roasted soybeans on intestinal health, diet digestibility, and pancreas weight of broilers. Journal of Applied Poultry Research, 23(1), 71–79. https://doi.org/10.3382/japr.2013-00829
dc.relationSalomão, K., Pereira, P. R. S., Campos, L. C., Borba, C. M., Cabello, P. H., Marcucci, M. C., & De Castro, S. L. (2008). Brazilian propolis: Correlation between chemical composition and antimicrobial activity. Evidence-Based Complementary and Alternative Medicine, 5(3), 317–324. https://doi.org/10.1093/ecam/nem058
dc.relationSepulveda, E., Gooycolea, F., Hernandez, J., & Velásquez, C. (2006). Pinocembrina: Principal componente quimico de propóleo sonorenses. Invurnus, 1(2). https://doi.org/10.13140/RG.2.1.1126.0007
dc.relationSeven, I., Seven, P. T., & Silici, S. (2011). Effects of dietary Turkish propolis as alter- native to antibiotic on growth and laying performances, nutrient digestibility and egg quality in laying hens under heat stress. Revista Medica Veterianria, 3, 186–191
dc.relationSforcin, J., & Bankova, V. (2011). Propolis: Is there a potential for the development of new drugs? Journal of Ethnopharmacology, 133, 253–260. https://doi.org/10.1016/j.jep.2010.10.032
dc.relationSforcin, J. M. (2007). Propolis and the immune system: a review. Journal of Ethnopharmacology, 113(1), 1–14. https://doi.org/10.1016/j.jep.2007.05.012
dc.relationShehata, M. G., Ahmad, F. T., Badr, A. N., Masry, S. H., & El-Sohaimy, S. A. (2020). Chemical analysis, antioxidant, cytotoxic and antimicrobial properties of propolis from different geographic regions. Annals of Agricultural Sciences, 65(2), 209–217. https://doi.org/10.1016/j.aoas.2020.12.001
dc.relationShreif, E. Y., & El-saadany, A. S. (2016). The effect of supplementing diet with propolis on bandarah laying hens’ performance. 5623(36).
dc.relationSilici, S., & Kutluca, S. (2005). Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. Journal of Ethnopharmacology, 99(1), 69–73. https://doi.org/10.1016/j.jep.2005.01.046
dc.relationSilveira, M. A. D., De Jong, D., Berretta, A. A., Galvão, E. B. dos S., Ribeiro, J. C., Cerqueira-Silva, T., Amorim, T. C., Conceição, L. F. M. R. da, Gomes, M. M. D., Teixeira, M. B., Souza, S. P. de, Santos, M. H. C. A. dos, San Martin, R. L. A., Silva, M. de O., Lírio, M., Moreno, L., Sampaio, J. C. M., Mendonça, R., Ultchak, S. S. Passos, R. da H. (2021). Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomedicine and Pharmacotherapy, 138. https://doi.org/10.1016/j.biopha.2021.111526
dc.relationSpellberg, B., Hansen, G. R., Kar, A., Cordova, C. D., Price, L. B., & Johnson, J. R. (2016). Antibiotic Resistance in Humans and Animals.
dc.relationSugiharto, S. (2016). Role of nutraceuticals in gut health and growth performance of poultry. Journal of the Saudi Society of Agricultural Sciences, 15(2), 99–111. https://doi.org/10.1016/j.jssas.2014.06.001
dc.relationTalero, C. A. (2014). Actividad anti-gérmenes in vitro de extractos etanólicos de propóleos obtenido de abejas (Apis mellifera) en tres áreas geográficas de Colombia. http://bdigital.unal.edu.co/39430/1/cesaraugustotalerourrego.2014.pdf
dc.relationTiveron, A. P., Rosalen, P. L., Franchin, M., Cristina, R., Lacerda, C., Bueno-silva, B., Benso, B., Denny, C., Ikegaki, M., & Alencar, S. M. De. (2016). Chemical characterization and antioxidant, antimicrobial, and anti-inflammatory activities of south brazilian organic propolis. 1–18. https://doi.org/10.1371/journal.pone.0165588
dc.relationTurk, D. E. (1982). The anatomy of the avian digestive tract as related to feed utilization. http://ps.oxfordjournals.org/
dc.relationVan Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A., & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5649–5654. https://doi.org/10.1073/pnas.1503141112
dc.relationVieira, W. C., Geraldo, A., Zangerônimo2, M. G., Gonçalves, J. M., Avelar, G. S., Costa, L. M. S., Valentim, J. K., & Garcia, R. G. (2020). Replacement of performance enhancers by propolis ethanol extract in broiler diets. Acta Scientiarum Animal Sciences, 43(1807–8672), 1–10.
dc.relationYegani, M., & Korver, D. R. (2008). Factors Affecting Intestinal Health in Poultry. Poultry Science, 87(10), 2052–2063. https://doi.org/10.3382/ps.2008-00091
dc.relationZafarnejad, K., Afzali, N., & Rajabzadeh, M. (2017). Effect of bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research, 2119, 1–6. https://doi.org/10.1080/09712119.2016.1174130
dc.relationBabaei, S., Rahimi, S., Amir, M., Torshizi, K., & Tahmasebi, G. (2016). Effects of propolis, royal jelly, honey and bee pollen on growth performance and immune system of Japanese quails. 7(1), 13–20.
dc.relationBarrera, Elizabeth, Gil, Jesús, Restrepo, Ana, Mosquera, Kelly, & Durango, Diego. (2015). A coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiiana). Revista Facultad Nacional de Agronomía Medellín, 68(2), 7667-7678. https://doi.org/10.15446/rfnam.v68n2.50982.
dc.relationBeber, A.P.; de Souza, P.; Boeing, T.; Somensi, L.B.; Mariano, L.N.B.; Cury, B.J.; Burci, L.M.; da Silva, C.B.; Simionatto, E.; de Andrade, S.F. Constituents of leaves from Bauhinia curvula Benth. exert gastroprotective activity in rodents: Role of quercitrin and kaempferol. Inflammopharmacology 2018, 26, 539–550.
dc.relationBracho Pérez J. C, Rodríguez Best C, , Llanes F. Triterpenos pentacíclicos en propóleo. Revista de la Sociedad Química del Perú [Internet]. 2009;75(4):439-452. Recuperado de: https://www.redalyc.org/articulo.oa?id=371937615006
dc.relationBraakhuis Andrea. (2019) Review Evidence on the Health Benefits of Supplemental Propolis. Nutrients 2019, 11, 2705; doi:10.3390/nu11112705 .
dc.relationDenli, M., Cankaya, S., Silici, S., Okan, F., & Uluocak, A. N. (2005). Effect of dietary addition of turkish propolis on the growth performance, carcass characteristics and serum variables of quail (Coturnix coturnix japonica). 848–854.
dc.relationGallo Margareth B. C, Sarachine Miranda J. (2009) Biological Activities of Lupeol. International Journal of Biomedical and Pharmaceutical Sciences. (Special Issue 1), 46-66.
dc.relationKędzia B. Chemical composition of polish propolis. Part I. The initial period of investigations. Post. Fitoter. 2009; 1:39–44.
dc.relationKurek-Górecka A, Rzepecka-Stojko A, Górecki M, Stojko J, Sosada M, Swierczek-Zieba G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules. 2013 Dec 20;19(1):78-101. doi: 10.3390/molecules19010078. PMID: 24362627; PMCID: PMC6271064
dc.relationMa Xia, Guo ZhenHuan, Li Yana, Yang Kun, Li Xianghui, Liu Yonglu, Shen Zhiqiang, Zhao Li, Zhang Zhiqiang. Phytochemical Constituents of Propolis Flavonoid, Immunological Enhancement, and Anti-porcine Parvovirus Activities Isolated From Propolis. Frontiers in Veterinary Science,volumen 9 2022. DOI=10.3389/fvets.2022.857183. ISSN=2297-1769
dc.relationPalomino García Lady Rossana, Martínez Galán Julián Paúl, García Pajón Carlos Mario, Gil González Jesús Humberto, Durango Restrepo Diego Luis. (2010) Caracterización Fisicoquímica y Actividad Antimicrobiana del Propóleos en el Municipio de La Unión (Antioquia, Colombia) Physicochemical Revista Facultad Nacional de Agronomía - Medellín, vol. 63, núm. 1, 2010, pp. 5373-5383Universidad Nacional de Colombia.
dc.relationRodríguez-Pérez, B., Canales-Martínez, M. M., Penieres-Carrillo, J. G., & Cruz-Sánchez, T. A. (2020). Composición química, propiedades antioxidantes y actividad antimicrobiana de propóleos mexicanos. Acta Universitaria 30, e2435. doi. http://doi.org/10.15174.au.2020.2435.
dc.relationSalamanca Grosso, G., Ramírez, C., Rubiano, L., González, E. V., Osorio, E. J., & Monica, H. (2000). Origen naturaleza y características de los propóleos Colombianos.
dc.relationSyed Ishtiaq Anjum, Amjad Ullah, Khalid Ali Khan, Mohammad Attaullah, Hikmatullah Khan, Hussain Ali, Muhammad Amjad Bashir, Muhammad Tahir, Mohammad Javed Ansari, Hamed A. Ghramh, Nuru Adgaba, Chandra Kanta Dash, Composition and functional properties of propolis (bee glue): A review, Saudi Journal of Biological Sciences, Volume 26, Issue 7, 2019, https://doi.org/10.1016/j.sjbs.2018.08.013.
dc.relationSousa de Menezes da Silveira Cinthia Cristina, Melo Pereira Fernandes Luanna, Lopes Silva Mallone, Araújo Luz Diandra, Quadros Gomes Antônio Rafael, Monteiro, Christiane Schineider Machado Marta Chagas, Reyes Torres Yohandra, Onofre de Lira Tatiana, Ferreira Antonio Gilberto, Fontes-Júnior Enéas Andrade, Ferraz Maia Cristiane Socorro, "Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis", Oxidative Medicine and Cellular Longevity, vol. 2016, Article ID 2906953, 14 pages, 2016. https://doi.org/10.1155/2016/2906953
dc.relationŠturm, L.; Ulrih, N. P. Propolis flavonoids and terpenes, and their interactions with model lipid membranes: a review. In Advances in Biomembranes and Lipid Self-Assembly; Bongiovanni, A., Pocsfalvi, G., Manno, M., Kralj-Iglic,̌ V., Eds.; Academic Press, 2020; Vol. 32, Chapter 2, pp 25−52.
dc.relationTurk, D. E. (1982). The anatomy of the avian digestive tract as related to feed utilization. http://ps.oxfordjournals.org/
dc.relationXu, X., Yang, B., Wang, D., Zhu, Y., Miao, X., & Yang, W. (2020). The chemical composition of brazilian green propolis and its protective effects on mouse aortic endothelial cells against inflammatory injury. Molecules, 25(20). https://doi.org/10.3390/molecules25204612.
dc.relationYılmaz L, Yılsay TÖ, Bayizit AA (2004). Chemical Composition, Biolog- ical Properties and Health Effects of Propolis.Food and Feed Science & Technology Journal 6: 34- 38.
dc.relationYegani, M., & Korver, D. R. (2008). Factors Affecting Intestinal Health in Poultry. Poultry Science, 87(10), 2052–2063. https://doi.org/10.3382/ps.2008-00091
dc.relationZafarnejad, K., Afzali, N., & Rajabzadeh, M. (2017). Effect of bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research, 2119, 1–6. https://doi.org/10.1080/09712119.2016.1174130.
dc.relationBabaei, S., Rahimi, S., Amir, M., Torshizi, K., & Tahmasebi, G. (2016). Effects of propolis , royal jelly , honey and bee pollen on growth performance and immune system of Japanese quails. 7(1), 13–20.
dc.relationBelote Bruna L., Soares Igor, Tujimoto-Silva Aline, Sanches Adrien W.D., Kraieski Antonio L., (2017) Applying I see inside histological methodology to evaluate gut health in broilers challenged with Eimeria, Veterinary Parasitology: X.
dc.relationBezerra Elizabeth, W. G. A., Silva, I. N. G., Teixeira, R. S. C., Lopes, E. S., Albuquerque, Á. H., & Cardoso, W. C. (2017). Antibióticos no setor avícola: uma revisão sobre a resistência microbiana. Archivos de Zootecnia, 66(254), 301–307. https://www.uco.es/ucopress/az/index.php/az/article/view/2335/1548.
dc.relationCasagrande AC, Machado GC, Brunetto AL, Galli GM, Rosa GD, Araujo DN, Boiago MM, Souza CF, Baldissera MM, Silva ASD. The addition of green propolis to laying hens had positive effects on egg quality: lower bacteria counts in the shell and lipid peroxidation in the yolk. An Acad Bras Cienc. 2021 Nov 22;93(suppl 4):e20210315. doi: 10.1590/0001-3765202120210315. PMID: 34817037.
dc.relationGonzález, N., & Barbeito, C. G. (2014). Histología de las Aves (primera). Universidad nacional de la plata . www.editorial.unlp.edu.ar
dc.relationWang Xiao-cui, Wang Xiao-hong, Wang Jing, Wang Hao, Zhang, Hai-jun,Wu Shu-geng, hai Qi Guang.(2022), Dietary tea polyphenol supplementation improved egg production performance,albumen quality, and magnum morphology of Hy-Line Brown hens during the late laying period.
dc.relationWu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br Poult Sci 2004; 45:76-84. Published by Oxford University Press on behalf of American Society of Animal Science.
dc.relationYegani, M., & Korver, D. R. (2008). Factors Affecting Intestinal Health in Poultry. Poultry Science, 87(10), 2052–2063. https://doi.org/10.3382/ps.2008-00091
dc.relationZafarnejad, K., Afzali, N., & Rajabzadeh, M. (2017). Effect of bee glue on growth performance and immune response of broiler chickens. Journal of Applied Animal Research, 2119, 1–6. https://doi.org/10.1080/09712119.2016.1174130.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de propóleos de La Mesa y Anolaima y su efecto sobre parámetros zootécnicos, calidad de huevo e integridad del tracto digestivo y reproductivo en gallinas ponedoras de huevo marrón
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución