dc.contributor | Orozco Lopez, Fabian | |
dc.contributor | Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach) | |
dc.contributor | Christian Becerra [0000000296623813] | |
dc.contributor | BECERRA RIVAS, CHRISTIAN ALONSO [0001535835] | |
dc.contributor | Christian Alonso Becerra [Christian-Becerra] | |
dc.contributor | Christian Alonso Becerra Rivas [AJsN-F7-D4NJlHWfvCzFFoYK3QhTUbFz5pzpo46E8Bsiin981m6tOiF4UK2jLdZXDlh_SOl32nxOMRzvYaQkQpr3QZc9GaRN6A] | |
dc.creator | Becerra Rivas, Christian Alonso | |
dc.date.accessioned | 2023-07-28T14:19:03Z | |
dc.date.accessioned | 2023-08-25T14:14:21Z | |
dc.date.available | 2023-07-28T14:19:03Z | |
dc.date.available | 2023-08-25T14:14:21Z | |
dc.date.created | 2023-07-28T14:19:03Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84352 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8427072 | |
dc.description.abstract | Los canales iónicos han despertado recientemente el interés de estudio desde la farmacología dada su potencial aplicación como dianas terapéuticas en el tratamiento de diversas patologías. En esta medida se planteó una biblioteca de compuestos de núcleo heterocíclico pirazólico, tiazolidinónico, tiazepínico y pirimidínico que pudieran interactuar con dianas moleculares de esta familia de proteínas; resultando de especial interés para este trabajo el receptor GABAA y el canal de sodio dependiente de voltaje NaV1.7. Dicha biblioteca se sometió a un proceso de cribado mediante docking molecular usando 3 programas (AutoDock4, AutoDock-VINA y DOCK6), determinación in silico de los descriptores moleculares de biodisponibilidad de Lipinski (ADME) y predicción de las propiedades toxicológicas, seleccionando los prototipos más promisorios y llevándolos a la fase de síntesis donde se estudiaron también las condiciones óptimas, así como sutilezas estructurales y de reactividad orientadas al mejoramiento de los procesos químicos que permitieron obtener con buenos rendimientos, 4 series de compuestos con un alto perfil promisorio en modulación de los canales iónicos diana para el tratamiento de enfermedades derivadas de una desregulación autonómica de las señales nerviosas. Además del nuevo conocimiento obtenido sobre los aspectos estructurales, cinéticos y termodinámicos pertinentes para la síntesis de las moléculas objetivo de interés para este estudio. | |
dc.description.abstract | Ion channels have recently aroused study interest from pharmacology, given their potential usage as therapeutic targets in the treatment of diverse pathologies. To this purpose, a library of compounds with heterocyclic nucleus such as pyrazole, thiazolidine, thiazepine and pyrimidine was proposed, so that they could interact with molecular targets of this family of proteins; resulting especially interesting for the purpose of this work, GABA-A receptor and voltage gated sodium channel NaV1.7. Mentioned library was subjected to a screening process by molecular docking using three programs (AutoDock4, AutoDock-VINA, and DOCK6), in silico calculus of Lipinski bioavailability descriptors (ADME) and prediction of toxicological properties, selecting the most promising prototypes and taking them to synthesis phase, where optimal conditions as well as structural and reactivity subtleties were studied, aiming for the improvement of the chemical processes that allowed to obtain with good yields, four series of compounds with high promising profile in modulation of the target ion channels for the treatment of diseases related from autonomic deregulation of nerve signals. Besides of new knowledge acquired about the structural, kinetic and thermodynamic aspects related with the synthesis of target molecules interesting for the purposes of this work. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Doctorado en Ciencias - Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | M. Martínez-Rosas, “Los canales iónicos: la biología y patología,” Arch. Cardiol. México, vol. 74, no. 2, pp. S205–S210, 2004. | |
dc.relation | K. June-Bum, “Channelopathies,” Korean J Pediatr, vol. 57, no. 1, pp. 194–194, 2014. | |
dc.relation | D. M. Kullmann, “Neurological channelopathies,” Annu. Rev. Neurosci., vol. 33, pp. 151–
172, 2010. | |
dc.relation | P. Nuss, “Anxiety disorders and GABA neurotransmission: A disturbance of modulation,”
Neuropsychiatr. Dis. Treat., vol. 11, pp. 165–175, 2015. | |
dc.relation | Y. B. Martin, G. Herradon, and L. Ezquerra, “Uncovering New Pharmacological Targets to
Treat Neuropathic Pain by Understanding How the Organism Reacts to Nerve Injury,” Curr.
Pharm. Des., vol. 17, no. 5, pp. 434–448, 2011. | |
dc.relation | Grupo de Gestión Integrada para la Salud Mental, “Boletín de salud mental Salud mental
en niños, niñas y adolescentes,” 2017. | |
dc.relation | Grupo Gestión Integrada para la Salud Mental, “Boletín de salud mental: Análisis de
Indicadores en Salud Mental por territorio,” 2018. | |
dc.relation | P. Xiong, M. Liu, B. Liu, and B. J. Hall, “Trends in the incidence and DALYs of anxiety
disorders at the global, regional, and national levels: Estimates from the Global Burden of
Disease Study 2019,” J. Affect. Disord., vol. 297, no. October 2021, pp. 83–93, 2022. | |
dc.relation | C. Gudex, “Adverse effects of Benzodiazepines,” Soc. Sci. Med., vol. 33, no. 5, pp. 587–
596, 1991. | |
dc.relation | J. W. Martinez, J. C. Sánchez-Naranjo, and P. A. Londoño de los Rios, “Prevalencia de
neuropatía periférica asociada a quimioterapia en cuatro centros oncológicos de
Colombia,” Rev. Neurol., vol. 69, pp. 94–98, 2019 | |
dc.relation | J. Moore and C. Gaines, “Gabapentin for chronic neuropathic pain in adults,” Br. J.
Community Nurs., vol. 24, no. 12, pp. 608–609, 2019. | |
dc.relation | D. C. Tamayo, “Diabetes en Colombia: Descripción de la epidemiología actual,” 2013. | |
dc.relation | V. Verma, N. Singh, and A. Jaggi, “Pregabalin in Neuropathic Pain: Evidences and Possible
Mechanisms,” Curr. Neuropharmacol., vol. 12, no. 1, pp. 44–56, 2014. | |
dc.relation | J. T. Hong et al., “Pharmacological target therapy of neuropathic pain and patient-reported
outcomes in patients with chronic low back pain in Korea: Results from the NLBP
Outcomes Research,” Med. (United States), vol. 97, no. 35, pp. 1–8, 2018 | |
dc.relation | S. Mandal, M. Moudgil, and S. K. Mandal, “Rational drug design,” Eur. J. Pharmacol., vol.
625, no. 1–3, pp. 90–100, 2009. | |
dc.relation | G. Thomas, Fundamentals of medicinal chemistry., vol. 32, no. 3. 2004. | |
dc.relation | T. Langer and R. D. Hoffmann, Methods and principles in Medicinal Chemistry.
Pharmacophores and pharmacophore searches. 2006. | |
dc.relation | M. E. Welsch, S. A. Snyder, and B. R. Stockwell, “Privileged scaffolds for library design and
drug discovery,” Curr. Opin. Chem. Biol., vol. 14, no. 3, pp. 347–361, 2010 | |
dc.relation | C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and
computational approaches to estimate solubility and permeability in drug discovery and
development settings,” Adv. Drug Deliv. Rev., vol. 46, pp. 3–26, 2001. | |
dc.relation | M. Sahu and N. Siddiqui, “A review on biological importance of pyrimidines in the new era.,”
Int. J. Pharm. Pharm. Sci., vol. 8, no. 5, pp. 8–21, 2016. | |
dc.relation | S. Kumar, S. Bawa, S. Drabu, R. Kumar, and H. Gupta, “Biological Activities of Pyrazoline
Derivatives -A Recent Development,” Recent Pat. Antiinfect. Drug Discov., 2009. | |
dc.relation | S. Nirwan, V. Chahal, and R. Kakkar, “Thiazolidinones: Synthesis, Reactivity, and Their
Biological Applications,” J. Heterocycl. Chem., vol. 56, no. 4, pp. 1239–1253, 2019. | |
dc.relation | F. de Sa Alves, E. Barreiro, and C. Manssour Fraga, “From Nature to Drug Discovery: The
Indole Scaffold as a Privileged Structure,” Mini-Reviews Med. Chem., vol. 9, no. 7, pp. 782–
793, 2009 | |
dc.relation | K. Hiesinger, D. Dar’In, E. Proschak, and M. Krasavin, “Spirocyclic Scaffolds in Medicinal
Chemistry,” J. Med. Chem., vol. 64, no. 1, pp. 150–183, 2021. | |
dc.relation | P. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem. Soc. Rev.,
vol. 39, no. 1, pp. 301–312, 2010. | |
dc.relation | C. Gómez-restrepo, N. Tamayo, and A. Bohórquez, “Trastornos depresivos y de ansiedad y
factores asociados en la población adulta colombiana , Encuesta Nacional de Salud Mental
2015,” Rev. Colomb. Psiquiatr., vol. 5, no. S 1, pp. 58–67, 2016. | |
dc.relation | B. A. Kotsias, “LOS CANALES IÓNICOS COMO BLANCO DE DROGAS,” Medicina (B.
Aires)., vol. 81, pp. 308–309, 2021. | |
dc.relation | S. Alexander, A. Mathie, and J. Peters, “ION CHANNELS,” Br. J. Pharmacol., vol. 164, no.
supplement s1, pp. S137–S174, Nov. 2011. | |
dc.relation | W. A. Catterall, “Structure and Function of Voltage-Sensitive,” Science (80-. )., vol. 242, pp.
51–61, 1988. | |
dc.relation | J. J. Galligan, “Ligand-gated ion channels in the enteric nervous system,”
Neurogastroenterol. Motil., vol. 14, no. 6, pp. 611–623, 2002. | |
dc.relation | J. Medel, L. Cortijo, E. Gasca, P. Tepetlan, A. Pérez, and F. Ramos, “Receptor GABAA:
implicaciones farmacológicas a nivel central,” Arch. neurociencias (México, D.F.), vol. 16,
no. 1, pp. 40–45, 2011. | |
dc.relation | J. Egebjerg, A. Schousboe, and P. Krogsgaard - Larsen, Glutamate and GABA receptors
and transporters. Taylor and Francis Inc., 2002. | |
dc.relation | S. Zhu, C. M. Noviello, J. Teng, R. M. Walsh, J. J. Kim, and R. E. Hibbs, “Structure of a
human synaptic GABAA receptor,” Nature, vol. 559, no. 7712, pp. 67–88, 2018. | |
dc.relation | H. Zuo et al., “Structural basis for auxiliary subunit KCTD16 regulation of the GABA-B
receptor,” Proc. Natl. Acad. Sci., vol. 116, no. 17, pp. 8370 LP – 8379, Apr. 2019. | |
dc.relation | R. Olsen and H. Betz, “GABA and Glycine,” in Basic Neurochemistry: Mollecular, Cellular
and Medical Aspects., Septima ed., G. Siegel, R. Albers, S. Brady, and D. Price, Eds.
Elsevier, 2006, pp. 291–302. | |
dc.relation | U. Handa and K. Saroha, “Research and development of diazepam solid dispersion powder
using natural polymers,” Int. J. Appl. Pharm., vol. 10, no. 5, pp. 220–225, 2018. | |
dc.relation | J. Payandeh, T. Scheuer, N. Zheng, and W. A. Catterall, “THE CRYSTAL STRUCTURE OF
A VOLTAGE-GATED SODIUM CHANNEL,” Nature, vol. 475, no. 7356, pp. 353–358, 2012. | |
dc.relation | S. D. Dib-Hajj and S. G. Waxman, “Sodium Channels in Human Pain Disorders: Genetics
and Pharmacogenomics.,” Annu. Rev. Neurosci., vol. 42, pp. 87–106, Jul. 2019. | |
dc.relation | B. Furman, “Tetrodotoxin,” in Reference Module in Biomedical Sciences, Elsevier, 2018,
pp. 1–4. | |
dc.relation | D. van der Merwe, “Chapter 31 - Cyanobacterial (Blue-Green Algae) Toxins,” in Handbook
of Toxicology of Chemical Warfare Agents, R. C. B. T.-H. of T. of C. W. A. (Second E.
Gupta, Ed. Boston: Academic Press, 2015, pp. 421–429. | |
dc.relation | D. L. Bennett, A. J. Clark, J. Huang, S. G. Waxman, and S. D. Dib-Hajj, “The Role of
Voltage-Gated Sodium Channels in Pain Signaling.,” Physiol. Rev., vol. 99, no. 2, pp.
1079–1151, Apr. 2019 | |
dc.relation | R. H. Dworkin et al., “Recommendations for the pharmacological management of
neuropathic pain: An overview and literature update,” Mayo Clin. Proc., vol. 85, no. 3
SUPPL., pp. S3–S14, 2010. | |
dc.relation | H. Shen, H. Shen, D. Liu, K. Wu, J. Lei, and N. Yan, “Structures of human Na v 1 . 7
channel in complex with auxiliary subunits and animal toxins,” Science (80-. )., vol. 2493,
no. February, pp. 1–12, 2019 | |
dc.relation | A. Alcántara Montero and C. I. Sánchez Carnerero, “Voltage-gated sodium channel
blockers: New perspectives in the treatment of neuropathic pain,” Neurologia, vol. 36, no. 2,
pp. 169–171, 2021. | |
dc.relation | R. B. Silverman, The organic chemistry of drug design and drug action, Second edi.
Elsevier Academic Press, 2004. | |
dc.relation | D. S. Wishart et al., “DrugBank : a comprehensive resource for in silico drug discovery and
exploration,” Nucleic Acids Res., vol. 34, pp. 668–672, 2006. | |
dc.relation | C. Saavedra-Coronado, “DISEÑO RACIONAL DE NUEVOS COMPUESTOS
ESPIROHETEROCÍCLICOS NITROGENADOS Y AZUFRADOS COMO POTENCIALES
MODULADORES ALOSTÉRICOS DE RECEPTORES GABA-A,” Universidad Nacional de
Colombia, 2018 | |
dc.relation | J. C. Escalona-Arranz, R. Carrasco-velar, and J. Padrón-García, Introducción al diseño
racional de fármacos, 1ra edició. Ciudad de la Habana: Editorial Universitaria, 2008. | |
dc.relation | I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, “Simple Method of
Calculating Octanol/Water Partition Coefficient,” Chem. Pharm. Bull, vol. 40, no. 1, pp. 127–
130, 1992. | |
dc.relation | A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A knowledge-based approach in
designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative
and quantitative characterization of known drug databases,” J. Comb. Chem., vol. 1, no. 1,
pp. 55–68, 1999 | |
dc.relation | H. Zhu, T. M. Martin, L. Ye, A. Sedykh, D. M. Young, and A. Tropsha, “Quantitative
structure-activity relationship modeling of rat acute toxicity by oral exposure,” Chem. Res.
Toxicol., vol. 22, no. 12, pp. 1913–1921, 2009. | |
dc.relation | C. Sawyer, R. Peto, L. Bernstein, M. C. Pike, and L. Bernstein, “Calculation of Carcinogenic
Potency from Long-term Animal Carcinogenesis Experiments,” Biometrics, vol. 40, no. 1,
pp. 27–40, 1984. | |
dc.relation | C. Xu, F. Cheng, L. Chen, Z. Du, and Y. Tang, “In silico Prediction of Chemical Ames
Mutagenicity,” J. Chem. Inf. Model., vol. 52, pp. 2840–2847, 2012. | |
dc.relation | D. M. Maron and B. N. Ames, “Revised methods for the Salmonella mutagenicity test,”
Mutat. Res., vol. 113, pp. 173–215, 1983. | |
dc.relation | T. Khan, A. J. Lawrence, I. Azad, S. Raza, and A. R. Khan, “Molecular Docking Simulation
with Special Reference to Flexible Docking Approach,” JSM Chem., vol. 6, pp. 1053–1057,
2018. | |
dc.relation | N. Foloppe and R. Hubbard, “Towards Predictive Ligand Design With Free-Energy Based
Computational Methods ?,” Curr. Med. Chem., vol. 13, pp. 3583–3608, 2006. | |
dc.relation | A. F. Pozharskii, A. T. Soldatenkov, and A. R. Katritzky, Heterocycles in Life and Society.
2011. | |
dc.relation | T. Eicher and S. Hauptmann, The Chemistry of Heterocycles: Structures, Reactions,
Synthesis, and Applications., Second edi. John Wiley & Sons press, 2003. | |
dc.relation | R. A. Stockman, Heterocyclic chemistry, vol. 103. 2007 | |
dc.relation | J. Clayden, N. Greeves, and S. Warren, Organic Chemistry, 2nd Editio., vol. 270, no. 5234.
New York: Oxford University Press, 2012. | |
dc.relation | I. Eggleston, Advanced Organic Chemistry Part B: Reactions and Synthesis, 4th Ed., vol.
2001, no. 16. 2004 | |
dc.relation | B. Insuasty et al., “Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-
(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor
agents,” Bioorganic Med. Chem., vol. 18, no. 14, pp. 4965–4974, 2010. | |
dc.relation | N. K. Terrett, A. S. Bell, D. Brown, and P. Ellis, “Sildenafil (Viagra(TM)), a potent and
selective inhibitor of type 5 CGMP phosphodiesterase with utility for the treatment of male
erectile dysfunction,” Bioorganic Med. Chem. Lett., vol. 6, no. 15, pp. 1819–1824, 1996. | |
dc.relation | S. L. Zheng, Y. Wang, Z. Yu, Q. Lin, and P. Coppens, “Direct observation of a
photoinduced nonstabilized nitrile imine structure in the solid state,” J. Am. Chem. Soc., vol.
131, no. 50, pp. 18036–18037, 2009. | |
dc.relation | K. M. L. Rai and N. Linganna, “Mercuric acetate in organic synthesis: A simple procedure
for the synthesis of pyrazolines,” Synth. Commun., vol. 27, no. 21, pp. 3737–3744, 1997. | |
dc.relation | S. R. Donohue, C. Halldin, and V. W. Pike, “A facile and regioselective synthesis of
rimonabant through an enamine-directed 1,3-dipolar cycloaddition,” Tetrahedron Lett., vol.
49, no. 17, pp. 2789–2791, 2008. | |
dc.relation | O. L. Melo Trujillo, D. Alonso Pérez, M. Zabalza Cerdeiriña, S. Nogué Xarau, J. M. Grau
Junyent, and P. Munné Mas, “Tratamiento con fomepizol de una intoxicación aguda por
metanol,” Rev. Toxicol., vol. 21, no. 1, pp. 41–43, 2004. | |
dc.relation | A. S. Cheung and M. Grossmann, “Physiological basis behind ergogenic effects of anabolic
androgens,” Mol. Cell. Endocrinol., vol. 464, no. November 2016, pp. 14–20, 2018. | |
dc.relation | T. Hua et al., “Crystal structures of agonist-bound human cannabinoid receptor CB 1,”
Nature, vol. 547, no. 7664, pp. 468–471, 2017. | |
dc.relation | P. C. Lv, H. Q. Li, J. Sun, Y. Zhou, and H. L. Zhu, “Synthesis and biological evaluation of
pyrazole derivatives containing thiourea skeleton as anticancer agents,” Bioorganic Med.
Chem., vol. 18, no. 13, pp. 4606–4614, 2010. | |
dc.relation | R. Lin et al., “Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as
anti-tumor CDK inhibitors,” Bioorganic Med. Chem. Lett., vol. 17, no. 16, pp. 4557–4561,
2007. | |
dc.relation | M. S. Christodoulou, S. Liekens, K. M. Kasiotis, and S. A. Haroutounian, “Novel pyrazole
derivatives: Synthesis and evaluation of anti-angiogenic activity,” Bioorganic Med. Chem.,
vol. 18, no. 12, pp. 4338–4350, 2010. | |
dc.relation | A. Chauhan, P. K. Sharma, and N. Kaushik, “Pyrazole: A versatile moiety,” Int. J.
ChemTech Res., vol. 3, no. 1, pp. 11–17, 2011. | |
dc.relation | M. Bonesi, M. R. Loizzo, G. A. Statti, S. Michel, F. Tillequin, and F. Menichini, “The
synthesis and Angiotensin Converting Enzyme (ACE) inhibitory activity of chalcones and
their pyrazole derivatives,” Bioorganic Med. Chem. Lett., vol. 20, no. 6, pp. 1990–1993,
2010. | |
dc.relation | R. Sridhar et al., “Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates,”
Bioorganic Med. Chem. Lett., vol. 14, no. 24, pp. 6035–6040, 2004. | |
dc.relation | S. Radi, S. Salhi, and A. Radi, “Synthesis and Preliminary Biological Activity of Some New
Pyrazole Derivatives as Acyclonucleoside Analogues,” Lett. Drug Des. Discov., vol. 7, no.
1, pp. 27–30, 2009. | |
dc.relation | F. F. Barsoum and A. S. Girgis, “Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1-
carboxamides) and their thio-analogues of potential PGE2 inhibitory properties,” Eur. J.
Med. Chem., vol. 44, no. 5, pp. 2172–2177, 2009. | |
dc.relation | O. I. El-Sabbagh et al., “Synthesis and antiviral activity of new pyrazole and thiazole
derivatives,” Eur. J. Med. Chem., vol. 44, no. 9, pp. 3746–3753, 2009. | |
dc.relation | C. A. Luscombe, Z. Huang, M. G. Murray, M. Miller, J. Wilkinson, and G. D. Ewart, “A novel
Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro
and shows synergism with recombinant interferon-α-2b and nucleoside analogues,”
Antiviral Res., vol. 86, no. 2, pp. 144–153, 2010. | |
dc.relation | M. Abdel-Aziz, G. E. D. A. Abuo-Rahma, and A. A. Hassan, “Synthesis of novel pyrazole
derivatives and evaluation of their antidepressant and anticonvulsant activities,” Eur. J.
Med. Chem., vol. 44, no. 9, pp. 3480–3487, 2009. | |
dc.relation | P. Biginelli, “Ueber aldehyduramide des acetessigäthers,” Berichte der deustchen Chem. Gesellschaft., pp. 1317–1319, 1891. | |
dc.relation | R. Merugu, S. Garimella, D. Balla, and K. Sambaru, “Synthesis and biological activities of
pyrimidines: A review,” Int. J. PharmTech Res., vol. 8, no. 6, pp. 88–93, 2015. | |
dc.relation | A. E. G. E. Amr, H. H. Sayed, and M. M. Abdulla, “Synthesis and reactions of some new
substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and
antiparkinsonian agents,” Arch. Pharm. (Weinheim)., vol. 338, no. 9, pp. 433–440, 2005. | |
dc.relation | M. M. M. Ramiz, W. A. El-Sayed, A. I. El-Tantawy, and A. A. H. Abdel-Rahman,
“Antimicrobial activity of new 4, 6-disubstituted pyrimidine, pyrazoline, and pyran
derivatives,” Arch. Pharm. Res., vol. 33, no. 5, pp. 647–654, 2010. | |
dc.relation | N. C. Desai, A. H. Makwana, and R. D. Senta, “Synthesis, characterization and
antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2-
ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides,” J. Saudi Chem. Soc., vol. 20, no. 6, pp.
686–694, 2016. | |
dc.relation | D. L. Guo et al., “Structural modifications of 5,6-dihydroxypyrimidines with anti-HIV activity,”
Bioorganic Med. Chem. Lett., vol. 22, no. 23, pp. 7114–7118, 2012. | |
dc.relation | I. K. Ho and R. A. Harris, “Mechanism of action of barbiturates.,” Annu. Rev. Pharmacol.
Toxicol., vol. 21, pp. 83–111, 1981. | |
dc.relation | A. R. Katritzky and A. F. Pozharskii, Handbook of heterocyclic chemistry, 2nd editio.
Elsevier Academic Press, 2000. | |
dc.relation | A. C. Tripathi, S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma, and S. K. Saraf, “4-
Thiazolidinones: The advances continue.,” Eur. J. Med. Chem., vol. 72, pp. 52–77, 2014. | |
dc.relation | F. C. Brown, “4-Thiazolidinones,” Chem. Rev., vol. 61, no. 5, pp. 463–521, 1961. | |
dc.relation | X. Zhang et al., “Ionic liquid mediated and promoted eco-friendly preparation of
thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic
activities,” Bioorganic Med. Chem. Lett., vol. 19, no. 22, pp. 6280–6283, 2009. | |
dc.relation | C. J. Andres et al., “4-Thiazolidinones: Novel inhibitors of the bacterial enzyme MurB,”
Bioorganic Med. Chem. Lett., vol. 10, no. 8, pp. 715–717, 2000. | |
dc.relation | P. Vicini, A. Geronikaki, M. Incerti, F. Zani, J. Dearden, and M. Hewitt, “2-Heteroarylimino-
5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4-
thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship,”
Bioorganic Med. Chem., vol. 16, no. 7, pp. 3714–3724, 2008. | |
dc.relation | H. D. Troutman and L. M. Long, “The synthesis of 2,3-disubstituted 4-thiazolidinones,” J.
Am. Chem. Soc., vol. 70, pp. 3436–3439, 1948. | |
dc.relation | K. A. M. El-Bayouki, “Synthesis, reactions, and biological activity of 1,4-thiazepines and
their fused aryl and heteroaryl derivatives: A review,” J. Sulfur Chem., vol. 32, no. 6, pp.
623–690, 2011. | |
dc.relation | L. H. S. Smith, S. C. Coote, H. E. Sneddon, and D. J. Procter, “Beyond the Pummerer
reaction: Recent developments in thionium ion chemistry,” Angew. Chemie - Int. Ed., vol.
49, no. 34, pp. 5832–5844, 2010. | |
dc.relation | D. J. Le Count, “Azepines and their Fused-ring Derivatives,” in Comprehensive Heterocyclic
Chemistry II: A Review of the Literature 1982-1995, vol. 9, no. 17, 1996, pp. 1–43. | |
dc.relation | A. K. K, N. Renuka, K. R. Raghavendra, V. K. G, and B. K. Ranjitha,
“BENZOTHIAZEPINES-AN OVERVIEW,” Int. J. Basic Appl. Chem. Sci., vol. 5, no. 1, pp.
79–88, 2015. | |
dc.relation | G. R. Mhaske, S. S. Bajod, D. M. Ambhore, and S. N. Shelke, “Synthesis and Evaluation of
Novel 1, 5-Benzothiazepine Derivatives as Anti-Inflammatory Agents,” Int. J. Innov. Res.
Technol. Sci. Eng., vol. 3, no. 6, pp. 13208–13215, 2014. | |
dc.relation | K. L. Ameta, N. S. Rathore, and B. Kumar, “Synthesis and preliminary evaluation of novel 1,
5-benzothiazepine derivatives as anti-lung cancer agents,” Int. J. Pharm., vol. 3, no. 2, pp.
328–333, 2013. | |
dc.relation | A. P. Gaywood and H. McNab, “Methylene meldrums acid derivatives of indoxyl and their cyclization reactions under flash vacuum pyrolysis conditions,” Synthesis (Stuttg)., no. 8,
pp. 1361–1364, 2010. | |
dc.relation | W. Von Der Saal, J. peter Hoick, W. Kampe, A. Mertens, and B. Muller-beckmann,
“Nonsteroidal Cardiotonics. 2. The Inotropic Activity of Linear, Tricyclic 5-6-5 Fused
Heterocycles,” J. Med. Chem., vol. 32, no. 7, pp. 1481–1491, 1989. | |
dc.relation | G. M. Karp, “Preparation and reactions of indolin-2(3H)-ones. A review,” Org. Prep. Proced.
Int., vol. 25, no. 5, pp. 481–513, 1993. | |
dc.relation | A. Mahamadi, P. Parimoo, W. G. Haney, and B. F. Grabowski, “Potential psychoactive
indole derivatives II: Synthesis of 5‐alkoxyindolines via reduction of 5‐alkoxy‐2‐indolinones,”
J. Pharm. Sci., vol. 62, no. 3, pp. 490–492, 1973. | |
dc.relation | P. G. Gassman, T. J. Van Bergen, and G. Gruetzmacher, “Use of Halogen-Sulfide
Complexes in the Synthesis of Indoles, Oxindoles, and Alkylated Aromatic Amines,” J. Am.
Chem. Soc., vol. 95, no. 19, pp. 6508–6509, 1973. | |
dc.relation | T. Takeda and A. Tsubouchi, Pummerer Reaction. 2007. | |
dc.relation | Y. M. Khetmalis, M. Shivani, S. Murugesan, and K. V. G. Chandra Sekhar, “Oxindole and
its derivatives: A review on recent progress in biological activities,” Biomed. Pharmacother.,
vol. 141, no. June, p. 111842, 2021. | |
dc.relation | S. Yagnam et al., “1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis,
characterization, electrochemical and antimicrobial evaluation,” Appl. Organomet. Chem.,
vol. 33, no. 4, pp. 1–15, 2019. | |
dc.relation | M. Kaur, M. Singh, and O. Silakari, “Oxindole-based SYK and JAK3 dual inhibitors for
rheumatoid arthritis: Designing, synthesis and biological evaluation,” Future Med. Chem.,
vol. 9, no. 11, pp. 1193–1211, 2017. | |
dc.relation | M. Yousuf et al., “Synthesis and biological evaluation of polyhydroxylated oxindole
derivatives as potential antileishmanial agent,” Bioorganic Med. Chem. Lett., vol. 28, no. 6,
pp. 1056–1062, 2018 | |
dc.relation | Y. Hirata et al., “Novel Oxindole-Curcumin Hybrid Compound for Antioxidative Stress and
Neuroprotection,” ACS Chem. Neurosci., vol. 11, no. 1, pp. 76–85, 2020 | |
dc.relation | S. Chander et al., “Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential
anti-HIV-1 agents,” Bioorg. Chem., vol. 79, no. December 2017, pp. 212–222, 2018. | |
dc.relation | N. L. Nam, I. I. Grandberg, V. I. Sorokin, K. A. T. Moscow, A. Academy, and G. Soedinenii,
“Synthesis of N1 substituted 5-amino-3-methylpyrazoles,” Chem. Heterocycl. Compd., vol.
36, no. 3, pp. 342–344, 2000. | |
dc.relation | M. Yu, K. Stevenson, and G. Zhou, “N-alkylation of lactams with secondary heterobenzylic
bromides,” Tetrahedron Lett., vol. 55, no. 41, pp. 5591–5594, 2014. | |
dc.relation | M. S. Shmidt, A. M. Reverdito, L. Kremenchuzky, and I. A. Perillo, “Simple and Efficient
Microwave Assisted N-alkylation of isatin,” Molecules, vol. 13, pp. 831–840, 2008. | |
dc.relation | V. F. Traven and I. V. Ivanov, “New reaction of photoaromatization of aryl- and
hetarylpyrazolines,” Russ. Chem. Bull., vol. 57, no. 5, pp. 1063–1069, 2008. | |
dc.relation | P. Mohanty and S. Bhatnagar, “In silico screening to identify inhibitors of growth factor
receptor 2-focal adhesion kinase interaction for therapeutic treatment of pathological
cardiac hypertrophy,” Assay Drug Dev. Technol., vol. 17, no. 2, pp. 58–67, 2019. | |
dc.relation | H. Yang et al., “AdmetSAR 2.0: Web-service for prediction and optimization of chemical
ADMET properties,” Bioinformatics, vol. 35, no. 6, pp. 1067–1069, 2019. | |
dc.relation | S. LLC., “PyMOL Molecular Graphic System.” Schrödinger LLC, 2015. | |
dc.relation | M. D. Hanwell, D. E. Curtis, and D. C. Lonie, “Avogadro: an advanced semantic chemical
editor, visualization, and analysis platform,” J. Cheminform., vol. 4, p. 17, 2012. | |
dc.relation | Michel F. Sanner., “AutoDock-Tools 1.5.6.” pp. 57–61, 1999. | |
dc.relation | W. Allen et al., “DOCK 6: Impact of New Features and Current Docking Performance,” J.
Comput. Chem., vol. 36, no. 15, pp. 1132–1156, 2015. | |
dc.relation | I. P. Lanchero, “Estudio in silico e in vivo de compuestos inhibidores de la enzima lipasa
pancreática: una contribución al reposicionamiento de fármcos antiobesidad,” Universidad
Nacional de Colombia, 2016. | |
dc.relation | K. Palacio-Rodríguez, I. Lans, C. N. Cavasotto, and P. Cossio, “Exponential consensus
ranking improves the outcome in docking and receptor ensemble docking,” Sci. Rep., vol. 9,
no. 1, pp. 1–14, 2019. | |
dc.relation | R. Silverstein, F. Webster, and D. Kiemle, Spectrometric identification of organic compunds
- 7th ed silverstein 2005.pdf, 7th editio. John Wiley & Sons press, 2005. | |
dc.relation | A. Rammohan, J. Satyanarayana, R. Gundala, S. Chittluri, and N. Rao, “Chalcone
synthesis, properties and medicinal applications: a review,” Environ. Chem. Lett., no.
0123456789, 2020. | |
dc.relation | J. G. Schmidt, “Über die Einwirkung von Aceton Furfurol und auf Bittermandelöl bei
Gegenwart von Alkalilauge.,” Berichte der deustchen Chem. Gesellschaft., vol. 14, no. 1,
pp. 1459–1461, 1881. | |
dc.relation | D. M. Arnold, M. G. Laporte, S. M. Anderson, and P. Wipf, “Condensation reactions of
guanidines with bis-electrophiles: Formation of highly nitrogenous heterocycles,”
Tetrahedron, vol. 69, no. 36, pp. 7719–7731, 2013. | |
dc.relation | A. S. Hecht et al., “MULTIFUNCTIONAL RADICAL QUENCHERS AND THEIR USES,” US
8,952,025 B2, 2015. | |
dc.relation | M. Engelmann, “Über eine Synthese des 1-Methyl-xanthins.,” Berichte der deustchen
Chem. Gesellschaft., vol. 42, no. 1, pp. 177–182, 1909. | |
dc.relation | A. O. Pushechnikov, D. M. Volochnyuk, and A. A. Tolmachev, “Interaction of izatins with
some five-membered aminoheterocycles,” Synlett, no. 7, pp. 1140–1142, 2002. | |
dc.relation | M. Uematsu and E. U. Frank, “Static Dielectric Constant of Water and Steam,” J. Phys.
Chem. Ref. Data, vol. 1291, no. 1980, pp. 1291–1306, 1997. | |
dc.relation | A. H. Johnstone, CRC Handbook of Chemistry and Physics-69th Edition, 69 Edition., vol.
50, no. 2. 2007 | |
dc.relation | P. W. Khirade, A. Chaudhari, J. B. Shinde, S. N. Helambe, and S. C. Mehrotra, “Static
dielectric constant and relaxation time measurements on binary mixtures of dimethyl
sulfoxide with ethanol, 2-ethoxyethanol, and propan-1-ol at 293, 303, 313, and 323 K,” J.
Chem. Eng. Data, vol. 44, no. 5, pp. 879–881, 1999. | |
dc.relation | U. V. Mardolcar, C. a. Castro, and F. J. V. Nieto De Santos, “Dielectric Benzene
Measurements of Toluene The measurements,” Fluid Phase Equilib., vol. 79, pp. 255–264,
1992. | |
dc.relation | K. R. Srinivasan and R. L. Kay, “The Pressure Dependence of the Dielectric Constant and
Density of Acetonitrile at Three Temperatures,” vol. 6, no. 5, pp. 357–367, 1977. | |
dc.relation | S. M. Modell and M. H. Lehmann, “The long OT syndrome family of cardiac ion channelopathies: A HuGE review,” Genet. Med., vol. 8, no. 3, pp. 143–155, 2006. | |
dc.relation | X. O. Deng, M. X. Song, S. Ben Wang, and Z. S. Quan, “Synthesis and evaluation of the anticonvulsant activity of 8-alkoxy-4,5-dihydrobenzo b 1,2,4 triazolo 4,3-d 1,4 thiazepine derivatives,” J. Enzyme Inhib. Med. Chem., vol. 29, no. 2, pp. 272–280, 2014. | |
dc.relation | D. A. Paterson, R. A. Conradi, A. R. Hilgers, T. J. Vidmar, and P. S. Burton, “A Non‐aqueous Partitioning System for Predicting the Oral Absorption Potential of Peptides,” Quant. Struct. Relationships, vol. 13, no. 1, pp. 4–10, 1994. | |
dc.relation | J. Morelli, “PRESCRIPTION ANXIETY MEDICATIONS.” Online. Available: https://www.rxlist.com/anxiety_medications/drugs-condition.htm. | |
dc.relation | I. Fleming, Orbital interaction theory of organic chemistry. Arvi Rauk. 2nd edn. John Wiley & Sons, Ltd, Chichester, 2001. xv?+?343 pages. 67.50. ISBN 0-471-35833-9, vol. 15, no. 10. 2001. | |
dc.relation | G. Broggini, L. Garanti, G. Molteni, T. Pilati, A. Ponti, and G. Zecchi, “Stereoselective intramolecular cycloadditions of homochiral nitrile imines: Synthesis of enantiomerically pure 3,3a-dihydro-pyrazolo1,5-a 1,4 benzodiazepine-6(4H)-ones,” Tetrahedron Asymmetry, vol. 10, no. 11, pp. 2203–2212, 1999. | |
dc.relation | M. F. El-zohry, I. M. A. Awad, and A. A. Abdel-hafez, “Spiroheterocycles Related to 1-oxa- 4-thiaspiro 4.4 nonan-2-one and 1-oxa-4-thiospiro 4.5 decan-2-one,” Arch. Pharm. (Weinheim)., vol. 326, pp. 115–118, 1993. | |
dc.relation | Y. Loidreau et al., “Synthesis and biological evaluation of N-arylbenzo b thieno 3,2-d pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors,” Eur. J. Med. Chem., vol. 58, pp. 171–183, 2012. | |
dc.relation | E. Perspicace et al., “Design, synthesis and biological evaluation of new classes of thieno 3,2-d pyrimidinone and thieno 1,2,3 triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2),” Eur. J. Med. Chem., vol. 63, pp. 765–781, 2013. | |
dc.relation | T. Michal, P. Radek, Y. X. Hao, C. Yen-Liang, Y. Fumiaki, and S. PeiYong, “Synthesis and Antiviral Activity of 4,6-Disubstituted Pyrimido 4,5-b indole Ribonucleosides,” Bioorg. Med. Chem., vol. 20, no. 20, pp. 6123–6133, 2012. | |
dc.relation | P. D. Neuenfeldt, B. B. Drawanz, W. Cunico, E. R. T. Tiekink, J. L. Wardell, and S. M. S. V. Wardell, “4-(Pyrimidin-2-yl)-1-thia-4-azaspiro- 4.5 decan-3-one,” Acta Crystallogr. Sect. E Struct. Reports Online, vol. 65, no. 12, 2009. | |
dc.relation | A. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant, and A. Loupy, “Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro indole-thiazolidinones as potent antifungal agents and crystal structure of spiro 3H-indole- 3,2-thiazolidine- 3(1,2,4-triazol-3-yl)-2,4 (1H)-dione,” Bioorganic Med. Chem., vol. 14, no. 7, pp. 2409–2417, 2006. | |
dc.relation | L. Claisen and A. Claparede, “Condensationen von Ketonen mit Aldehyden" Condensations of ketones with aldehydes,” Berichte der Dtsch. Chem. Gesellschaft, vol. 14, no. 1, pp. 2460–2468, 1881. | |
dc.relation | H. Chen and D. Shi, “Efficient one-pot synthesis of spiro[indoline-3,4-pyrazolo 3,4-e 1, 4 thiazepine dione via three-component reaction,” Tetrahedron, vol. 67, no. 31, pp. 5686– 5692, 2011. | |
dc.relation | C. Becerra-Rivas, P. Cuervo-Prado, and F. Orozco-Lopez, “Efficient catalyst-free tricomponent synthesis of new spiro cyclohexane-1,4-pyrazolo 3,4-e 1, 4 thiazepin- 7(6H)-ones,” Synth. Commun., vol. 49, no. 3, pp. 367–376, Feb. 2019. | |
dc.relation | U. R. Mane et al., “Pyrido 1,2-a pyrimidin-4-ones as antiplasmodial falcipain-2 inhibitors,” Bioorganic Med. Chem., vol. 20, no. 21, pp. 6296–6304, 2012. | |
dc.relation | M. R. Shiradkar et al., “Synthesis and anticonvulsant activity of clubbed thiazolidinonebarbituric acid and thiazolidinone-triazole derivatives,” Arkivoc, vol. 2007, no. 14, pp. 58–74, 2007. | |
dc.relation | A. A. Bekhit, H. M. A. Ashour, Y. S. Abdel Ghany, A. E. D. A. Bekhit, and A. Baraka, “Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1Hpyrazole as anti-inflammatory antimicrobial agents,” Eur. J. Med. Chem., vol. 43, no. 3, pp. 456–463, 2008. | |
dc.relation | Y. Motoyama, K. Kamo, and H. Nagashima, “Catalysis in polysiloxane gels: Platinumcatalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes,” Org. Lett., vol. 11, no. 6, pp. 1345–1348, 2009. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Diseño racional y síntesis de derivados heterocíclicos azufrados y nitrogenados con potencial actividad farmacológica sobre canales iónicos reguladores de las señales nerviosas | |
dc.type | Trabajo de grado - Doctorado | |