dc.contributorOrozco Lopez, Fabian
dc.contributorGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)
dc.contributorChristian Becerra [0000000296623813]
dc.contributorBECERRA RIVAS, CHRISTIAN ALONSO [0001535835]
dc.contributorChristian Alonso Becerra [Christian-Becerra]
dc.contributorChristian Alonso Becerra Rivas [AJsN-F7-D4NJlHWfvCzFFoYK3QhTUbFz5pzpo46E8Bsiin981m6tOiF4UK2jLdZXDlh_SOl32nxOMRzvYaQkQpr3QZc9GaRN6A]
dc.creatorBecerra Rivas, Christian Alonso
dc.date.accessioned2023-07-28T14:19:03Z
dc.date.accessioned2023-08-25T14:14:21Z
dc.date.available2023-07-28T14:19:03Z
dc.date.available2023-08-25T14:14:21Z
dc.date.created2023-07-28T14:19:03Z
dc.date.issued2023
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84352
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8427072
dc.description.abstractLos canales iónicos han despertado recientemente el interés de estudio desde la farmacología dada su potencial aplicación como dianas terapéuticas en el tratamiento de diversas patologías. En esta medida se planteó una biblioteca de compuestos de núcleo heterocíclico pirazólico, tiazolidinónico, tiazepínico y pirimidínico que pudieran interactuar con dianas moleculares de esta familia de proteínas; resultando de especial interés para este trabajo el receptor GABAA y el canal de sodio dependiente de voltaje NaV1.7. Dicha biblioteca se sometió a un proceso de cribado mediante docking molecular usando 3 programas (AutoDock4, AutoDock-VINA y DOCK6), determinación in silico de los descriptores moleculares de biodisponibilidad de Lipinski (ADME) y predicción de las propiedades toxicológicas, seleccionando los prototipos más promisorios y llevándolos a la fase de síntesis donde se estudiaron también las condiciones óptimas, así como sutilezas estructurales y de reactividad orientadas al mejoramiento de los procesos químicos que permitieron obtener con buenos rendimientos, 4 series de compuestos con un alto perfil promisorio en modulación de los canales iónicos diana para el tratamiento de enfermedades derivadas de una desregulación autonómica de las señales nerviosas. Además del nuevo conocimiento obtenido sobre los aspectos estructurales, cinéticos y termodinámicos pertinentes para la síntesis de las moléculas objetivo de interés para este estudio.
dc.description.abstractIon channels have recently aroused study interest from pharmacology, given their potential usage as therapeutic targets in the treatment of diverse pathologies. To this purpose, a library of compounds with heterocyclic nucleus such as pyrazole, thiazolidine, thiazepine and pyrimidine was proposed, so that they could interact with molecular targets of this family of proteins; resulting especially interesting for the purpose of this work, GABA-A receptor and voltage gated sodium channel NaV1.7. Mentioned library was subjected to a screening process by molecular docking using three programs (AutoDock4, AutoDock-VINA, and DOCK6), in silico calculus of Lipinski bioavailability descriptors (ADME) and prediction of toxicological properties, selecting the most promising prototypes and taking them to synthesis phase, where optimal conditions as well as structural and reactivity subtleties were studied, aiming for the improvement of the chemical processes that allowed to obtain with good yields, four series of compounds with high promising profile in modulation of the target ion channels for the treatment of diseases related from autonomic deregulation of nerve signals. Besides of new knowledge acquired about the structural, kinetic and thermodynamic aspects related with the synthesis of target molecules interesting for the purposes of this work.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationM. Martínez-Rosas, “Los canales iónicos: la biología y patología,” Arch. Cardiol. México, vol. 74, no. 2, pp. S205–S210, 2004.
dc.relationK. June-Bum, “Channelopathies,” Korean J Pediatr, vol. 57, no. 1, pp. 194–194, 2014.
dc.relationD. M. Kullmann, “Neurological channelopathies,” Annu. Rev. Neurosci., vol. 33, pp. 151– 172, 2010.
dc.relationP. Nuss, “Anxiety disorders and GABA neurotransmission: A disturbance of modulation,” Neuropsychiatr. Dis. Treat., vol. 11, pp. 165–175, 2015.
dc.relationY. B. Martin, G. Herradon, and L. Ezquerra, “Uncovering New Pharmacological Targets to Treat Neuropathic Pain by Understanding How the Organism Reacts to Nerve Injury,” Curr. Pharm. Des., vol. 17, no. 5, pp. 434–448, 2011.
dc.relationGrupo de Gestión Integrada para la Salud Mental, “Boletín de salud mental Salud mental en niños, niñas y adolescentes,” 2017.
dc.relationGrupo Gestión Integrada para la Salud Mental, “Boletín de salud mental: Análisis de Indicadores en Salud Mental por territorio,” 2018.
dc.relationP. Xiong, M. Liu, B. Liu, and B. J. Hall, “Trends in the incidence and DALYs of anxiety disorders at the global, regional, and national levels: Estimates from the Global Burden of Disease Study 2019,” J. Affect. Disord., vol. 297, no. October 2021, pp. 83–93, 2022.
dc.relationC. Gudex, “Adverse effects of Benzodiazepines,” Soc. Sci. Med., vol. 33, no. 5, pp. 587– 596, 1991.
dc.relationJ. W. Martinez, J. C. Sánchez-Naranjo, and P. A. Londoño de los Rios, “Prevalencia de neuropatía periférica asociada a quimioterapia en cuatro centros oncológicos de Colombia,” Rev. Neurol., vol. 69, pp. 94–98, 2019
dc.relationJ. Moore and C. Gaines, “Gabapentin for chronic neuropathic pain in adults,” Br. J. Community Nurs., vol. 24, no. 12, pp. 608–609, 2019.
dc.relationD. C. Tamayo, “Diabetes en Colombia: Descripción de la epidemiología actual,” 2013.
dc.relationV. Verma, N. Singh, and A. Jaggi, “Pregabalin in Neuropathic Pain: Evidences and Possible Mechanisms,” Curr. Neuropharmacol., vol. 12, no. 1, pp. 44–56, 2014.
dc.relationJ. T. Hong et al., “Pharmacological target therapy of neuropathic pain and patient-reported outcomes in patients with chronic low back pain in Korea: Results from the NLBP Outcomes Research,” Med. (United States), vol. 97, no. 35, pp. 1–8, 2018
dc.relationS. Mandal, M. Moudgil, and S. K. Mandal, “Rational drug design,” Eur. J. Pharmacol., vol. 625, no. 1–3, pp. 90–100, 2009.
dc.relationG. Thomas, Fundamentals of medicinal chemistry., vol. 32, no. 3. 2004.
dc.relationT. Langer and R. D. Hoffmann, Methods and principles in Medicinal Chemistry. Pharmacophores and pharmacophore searches. 2006.
dc.relationM. E. Welsch, S. A. Snyder, and B. R. Stockwell, “Privileged scaffolds for library design and drug discovery,” Curr. Opin. Chem. Biol., vol. 14, no. 3, pp. 347–361, 2010
dc.relationC. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Adv. Drug Deliv. Rev., vol. 46, pp. 3–26, 2001.
dc.relationM. Sahu and N. Siddiqui, “A review on biological importance of pyrimidines in the new era.,” Int. J. Pharm. Pharm. Sci., vol. 8, no. 5, pp. 8–21, 2016.
dc.relationS. Kumar, S. Bawa, S. Drabu, R. Kumar, and H. Gupta, “Biological Activities of Pyrazoline Derivatives -A Recent Development,” Recent Pat. Antiinfect. Drug Discov., 2009.
dc.relationS. Nirwan, V. Chahal, and R. Kakkar, “Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications,” J. Heterocycl. Chem., vol. 56, no. 4, pp. 1239–1253, 2019.
dc.relationF. de Sa Alves, E. Barreiro, and C. Manssour Fraga, “From Nature to Drug Discovery: The Indole Scaffold as a Privileged Structure,” Mini-Reviews Med. Chem., vol. 9, no. 7, pp. 782– 793, 2009
dc.relationK. Hiesinger, D. Dar’In, E. Proschak, and M. Krasavin, “Spirocyclic Scaffolds in Medicinal Chemistry,” J. Med. Chem., vol. 64, no. 1, pp. 150–183, 2021.
dc.relationP. Anastas and N. Eghbali, “Green Chemistry: Principles and Practice,” Chem. Soc. Rev., vol. 39, no. 1, pp. 301–312, 2010.
dc.relationC. Gómez-restrepo, N. Tamayo, and A. Bohórquez, “Trastornos depresivos y de ansiedad y factores asociados en la población adulta colombiana , Encuesta Nacional de Salud Mental 2015,” Rev. Colomb. Psiquiatr., vol. 5, no. S 1, pp. 58–67, 2016.
dc.relationB. A. Kotsias, “LOS CANALES IÓNICOS COMO BLANCO DE DROGAS,” Medicina (B. Aires)., vol. 81, pp. 308–309, 2021.
dc.relationS. Alexander, A. Mathie, and J. Peters, “ION CHANNELS,” Br. J. Pharmacol., vol. 164, no. supplement s1, pp. S137–S174, Nov. 2011.
dc.relationW. A. Catterall, “Structure and Function of Voltage-Sensitive,” Science (80-. )., vol. 242, pp. 51–61, 1988.
dc.relationJ. J. Galligan, “Ligand-gated ion channels in the enteric nervous system,” Neurogastroenterol. Motil., vol. 14, no. 6, pp. 611–623, 2002.
dc.relationJ. Medel, L. Cortijo, E. Gasca, P. Tepetlan, A. Pérez, and F. Ramos, “Receptor GABAA: implicaciones farmacológicas a nivel central,” Arch. neurociencias (México, D.F.), vol. 16, no. 1, pp. 40–45, 2011.
dc.relationJ. Egebjerg, A. Schousboe, and P. Krogsgaard - Larsen, Glutamate and GABA receptors and transporters. Taylor and Francis Inc., 2002.
dc.relationS. Zhu, C. M. Noviello, J. Teng, R. M. Walsh, J. J. Kim, and R. E. Hibbs, “Structure of a human synaptic GABAA receptor,” Nature, vol. 559, no. 7712, pp. 67–88, 2018.
dc.relationH. Zuo et al., “Structural basis for auxiliary subunit KCTD16 regulation of the GABA-B receptor,” Proc. Natl. Acad. Sci., vol. 116, no. 17, pp. 8370 LP – 8379, Apr. 2019.
dc.relationR. Olsen and H. Betz, “GABA and Glycine,” in Basic Neurochemistry: Mollecular, Cellular and Medical Aspects., Septima ed., G. Siegel, R. Albers, S. Brady, and D. Price, Eds. Elsevier, 2006, pp. 291–302.
dc.relationU. Handa and K. Saroha, “Research and development of diazepam solid dispersion powder using natural polymers,” Int. J. Appl. Pharm., vol. 10, no. 5, pp. 220–225, 2018.
dc.relationJ. Payandeh, T. Scheuer, N. Zheng, and W. A. Catterall, “THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL,” Nature, vol. 475, no. 7356, pp. 353–358, 2012.
dc.relationS. D. Dib-Hajj and S. G. Waxman, “Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics.,” Annu. Rev. Neurosci., vol. 42, pp. 87–106, Jul. 2019.
dc.relationB. Furman, “Tetrodotoxin,” in Reference Module in Biomedical Sciences, Elsevier, 2018, pp. 1–4.
dc.relationD. van der Merwe, “Chapter 31 - Cyanobacterial (Blue-Green Algae) Toxins,” in Handbook of Toxicology of Chemical Warfare Agents, R. C. B. T.-H. of T. of C. W. A. (Second E. Gupta, Ed. Boston: Academic Press, 2015, pp. 421–429.
dc.relationD. L. Bennett, A. J. Clark, J. Huang, S. G. Waxman, and S. D. Dib-Hajj, “The Role of Voltage-Gated Sodium Channels in Pain Signaling.,” Physiol. Rev., vol. 99, no. 2, pp. 1079–1151, Apr. 2019
dc.relationR. H. Dworkin et al., “Recommendations for the pharmacological management of neuropathic pain: An overview and literature update,” Mayo Clin. Proc., vol. 85, no. 3 SUPPL., pp. S3–S14, 2010.
dc.relationH. Shen, H. Shen, D. Liu, K. Wu, J. Lei, and N. Yan, “Structures of human Na v 1 . 7 channel in complex with auxiliary subunits and animal toxins,” Science (80-. )., vol. 2493, no. February, pp. 1–12, 2019
dc.relationA. Alcántara Montero and C. I. Sánchez Carnerero, “Voltage-gated sodium channel blockers: New perspectives in the treatment of neuropathic pain,” Neurologia, vol. 36, no. 2, pp. 169–171, 2021.
dc.relationR. B. Silverman, The organic chemistry of drug design and drug action, Second edi. Elsevier Academic Press, 2004.
dc.relationD. S. Wishart et al., “DrugBank : a comprehensive resource for in silico drug discovery and exploration,” Nucleic Acids Res., vol. 34, pp. 668–672, 2006.
dc.relationC. Saavedra-Coronado, “DISEÑO RACIONAL DE NUEVOS COMPUESTOS ESPIROHETEROCÍCLICOS NITROGENADOS Y AZUFRADOS COMO POTENCIALES MODULADORES ALOSTÉRICOS DE RECEPTORES GABA-A,” Universidad Nacional de Colombia, 2018
dc.relationJ. C. Escalona-Arranz, R. Carrasco-velar, and J. Padrón-García, Introducción al diseño racional de fármacos, 1ra edició. Ciudad de la Habana: Editorial Universitaria, 2008.
dc.relationI. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, “Simple Method of Calculating Octanol/Water Partition Coefficient,” Chem. Pharm. Bull, vol. 40, no. 1, pp. 127– 130, 1992.
dc.relationA. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases,” J. Comb. Chem., vol. 1, no. 1, pp. 55–68, 1999
dc.relationH. Zhu, T. M. Martin, L. Ye, A. Sedykh, D. M. Young, and A. Tropsha, “Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure,” Chem. Res. Toxicol., vol. 22, no. 12, pp. 1913–1921, 2009.
dc.relationC. Sawyer, R. Peto, L. Bernstein, M. C. Pike, and L. Bernstein, “Calculation of Carcinogenic Potency from Long-term Animal Carcinogenesis Experiments,” Biometrics, vol. 40, no. 1, pp. 27–40, 1984.
dc.relationC. Xu, F. Cheng, L. Chen, Z. Du, and Y. Tang, “In silico Prediction of Chemical Ames Mutagenicity,” J. Chem. Inf. Model., vol. 52, pp. 2840–2847, 2012.
dc.relationD. M. Maron and B. N. Ames, “Revised methods for the Salmonella mutagenicity test,” Mutat. Res., vol. 113, pp. 173–215, 1983.
dc.relationT. Khan, A. J. Lawrence, I. Azad, S. Raza, and A. R. Khan, “Molecular Docking Simulation with Special Reference to Flexible Docking Approach,” JSM Chem., vol. 6, pp. 1053–1057, 2018.
dc.relationN. Foloppe and R. Hubbard, “Towards Predictive Ligand Design With Free-Energy Based Computational Methods ?,” Curr. Med. Chem., vol. 13, pp. 3583–3608, 2006.
dc.relationA. F. Pozharskii, A. T. Soldatenkov, and A. R. Katritzky, Heterocycles in Life and Society. 2011.
dc.relationT. Eicher and S. Hauptmann, The Chemistry of Heterocycles: Structures, Reactions, Synthesis, and Applications., Second edi. John Wiley & Sons press, 2003.
dc.relationR. A. Stockman, Heterocyclic chemistry, vol. 103. 2007
dc.relationJ. Clayden, N. Greeves, and S. Warren, Organic Chemistry, 2nd Editio., vol. 270, no. 5234. New York: Oxford University Press, 2012.
dc.relationI. Eggleston, Advanced Organic Chemistry Part B: Reactions and Synthesis, 4th Ed., vol. 2001, no. 16. 2004
dc.relationB. Insuasty et al., “Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4- (3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents,” Bioorganic Med. Chem., vol. 18, no. 14, pp. 4965–4974, 2010.
dc.relationN. K. Terrett, A. S. Bell, D. Brown, and P. Ellis, “Sildenafil (Viagra(TM)), a potent and selective inhibitor of type 5 CGMP phosphodiesterase with utility for the treatment of male erectile dysfunction,” Bioorganic Med. Chem. Lett., vol. 6, no. 15, pp. 1819–1824, 1996.
dc.relationS. L. Zheng, Y. Wang, Z. Yu, Q. Lin, and P. Coppens, “Direct observation of a photoinduced nonstabilized nitrile imine structure in the solid state,” J. Am. Chem. Soc., vol. 131, no. 50, pp. 18036–18037, 2009.
dc.relationK. M. L. Rai and N. Linganna, “Mercuric acetate in organic synthesis: A simple procedure for the synthesis of pyrazolines,” Synth. Commun., vol. 27, no. 21, pp. 3737–3744, 1997.
dc.relationS. R. Donohue, C. Halldin, and V. W. Pike, “A facile and regioselective synthesis of rimonabant through an enamine-directed 1,3-dipolar cycloaddition,” Tetrahedron Lett., vol. 49, no. 17, pp. 2789–2791, 2008.
dc.relationO. L. Melo Trujillo, D. Alonso Pérez, M. Zabalza Cerdeiriña, S. Nogué Xarau, J. M. Grau Junyent, and P. Munné Mas, “Tratamiento con fomepizol de una intoxicación aguda por metanol,” Rev. Toxicol., vol. 21, no. 1, pp. 41–43, 2004.
dc.relationA. S. Cheung and M. Grossmann, “Physiological basis behind ergogenic effects of anabolic androgens,” Mol. Cell. Endocrinol., vol. 464, no. November 2016, pp. 14–20, 2018.
dc.relationT. Hua et al., “Crystal structures of agonist-bound human cannabinoid receptor CB 1,” Nature, vol. 547, no. 7664, pp. 468–471, 2017.
dc.relationP. C. Lv, H. Q. Li, J. Sun, Y. Zhou, and H. L. Zhu, “Synthesis and biological evaluation of pyrazole derivatives containing thiourea skeleton as anticancer agents,” Bioorganic Med. Chem., vol. 18, no. 13, pp. 4606–4614, 2010.
dc.relationR. Lin et al., “Design, synthesis, and evaluation of 3,4-disubstituted pyrazole analogues as anti-tumor CDK inhibitors,” Bioorganic Med. Chem. Lett., vol. 17, no. 16, pp. 4557–4561, 2007.
dc.relationM. S. Christodoulou, S. Liekens, K. M. Kasiotis, and S. A. Haroutounian, “Novel pyrazole derivatives: Synthesis and evaluation of anti-angiogenic activity,” Bioorganic Med. Chem., vol. 18, no. 12, pp. 4338–4350, 2010.
dc.relationA. Chauhan, P. K. Sharma, and N. Kaushik, “Pyrazole: A versatile moiety,” Int. J. ChemTech Res., vol. 3, no. 1, pp. 11–17, 2011.
dc.relationM. Bonesi, M. R. Loizzo, G. A. Statti, S. Michel, F. Tillequin, and F. Menichini, “The synthesis and Angiotensin Converting Enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives,” Bioorganic Med. Chem. Lett., vol. 20, no. 6, pp. 1990–1993, 2010.
dc.relationR. Sridhar et al., “Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates,” Bioorganic Med. Chem. Lett., vol. 14, no. 24, pp. 6035–6040, 2004.
dc.relationS. Radi, S. Salhi, and A. Radi, “Synthesis and Preliminary Biological Activity of Some New Pyrazole Derivatives as Acyclonucleoside Analogues,” Lett. Drug Des. Discov., vol. 7, no. 1, pp. 27–30, 2009.
dc.relationF. F. Barsoum and A. S. Girgis, “Facile synthesis of bis(4,5-dihydro-1H-pyrazole-1- carboxamides) and their thio-analogues of potential PGE2 inhibitory properties,” Eur. J. Med. Chem., vol. 44, no. 5, pp. 2172–2177, 2009.
dc.relationO. I. El-Sabbagh et al., “Synthesis and antiviral activity of new pyrazole and thiazole derivatives,” Eur. J. Med. Chem., vol. 44, no. 9, pp. 3746–3753, 2009.
dc.relationC. A. Luscombe, Z. Huang, M. G. Murray, M. Miller, J. Wilkinson, and G. D. Ewart, “A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-α-2b and nucleoside analogues,” Antiviral Res., vol. 86, no. 2, pp. 144–153, 2010.
dc.relationM. Abdel-Aziz, G. E. D. A. Abuo-Rahma, and A. A. Hassan, “Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities,” Eur. J. Med. Chem., vol. 44, no. 9, pp. 3480–3487, 2009.
dc.relationP. Biginelli, “Ueber aldehyduramide des acetessigäthers,” Berichte der deustchen Chem. Gesellschaft., pp. 1317–1319, 1891.
dc.relationR. Merugu, S. Garimella, D. Balla, and K. Sambaru, “Synthesis and biological activities of pyrimidines: A review,” Int. J. PharmTech Res., vol. 8, no. 6, pp. 88–93, 2015.
dc.relationA. E. G. E. Amr, H. H. Sayed, and M. M. Abdulla, “Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents,” Arch. Pharm. (Weinheim)., vol. 338, no. 9, pp. 433–440, 2005.
dc.relationM. M. M. Ramiz, W. A. El-Sayed, A. I. El-Tantawy, and A. A. H. Abdel-Rahman, “Antimicrobial activity of new 4, 6-disubstituted pyrimidine, pyrazoline, and pyran derivatives,” Arch. Pharm. Res., vol. 33, no. 5, pp. 647–654, 2010.
dc.relationN. C. Desai, A. H. Makwana, and R. D. Senta, “Synthesis, characterization and antimicrobial activity of some novel 4-(4-(arylamino)-6-(piperidin-1-yl)-1,3,5-triazine-2- ylamino)-N-(pyrimidin-2-yl)benzenesulfonamides,” J. Saudi Chem. Soc., vol. 20, no. 6, pp. 686–694, 2016.
dc.relationD. L. Guo et al., “Structural modifications of 5,6-dihydroxypyrimidines with anti-HIV activity,” Bioorganic Med. Chem. Lett., vol. 22, no. 23, pp. 7114–7118, 2012.
dc.relationI. K. Ho and R. A. Harris, “Mechanism of action of barbiturates.,” Annu. Rev. Pharmacol. Toxicol., vol. 21, pp. 83–111, 1981.
dc.relationA. R. Katritzky and A. F. Pozharskii, Handbook of heterocyclic chemistry, 2nd editio. Elsevier Academic Press, 2000.
dc.relationA. C. Tripathi, S. J. Gupta, G. N. Fatima, P. K. Sonar, A. Verma, and S. K. Saraf, “4- Thiazolidinones: The advances continue.,” Eur. J. Med. Chem., vol. 72, pp. 52–77, 2014.
dc.relationF. C. Brown, “4-Thiazolidinones,” Chem. Rev., vol. 61, no. 5, pp. 463–521, 1961.
dc.relationX. Zhang et al., “Ionic liquid mediated and promoted eco-friendly preparation of thiazolidinone and pyrimidine nucleoside-thiazolidinone hybrids and their antiparasitic activities,” Bioorganic Med. Chem. Lett., vol. 19, no. 22, pp. 6280–6283, 2009.
dc.relationC. J. Andres et al., “4-Thiazolidinones: Novel inhibitors of the bacterial enzyme MurB,” Bioorganic Med. Chem. Lett., vol. 10, no. 8, pp. 715–717, 2000.
dc.relationP. Vicini, A. Geronikaki, M. Incerti, F. Zani, J. Dearden, and M. Hewitt, “2-Heteroarylimino- 5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4- thiazolidinones with antimicrobial activity: Synthesis and structure-activity relationship,” Bioorganic Med. Chem., vol. 16, no. 7, pp. 3714–3724, 2008.
dc.relationH. D. Troutman and L. M. Long, “The synthesis of 2,3-disubstituted 4-thiazolidinones,” J. Am. Chem. Soc., vol. 70, pp. 3436–3439, 1948.
dc.relationK. A. M. El-Bayouki, “Synthesis, reactions, and biological activity of 1,4-thiazepines and their fused aryl and heteroaryl derivatives: A review,” J. Sulfur Chem., vol. 32, no. 6, pp. 623–690, 2011.
dc.relationL. H. S. Smith, S. C. Coote, H. E. Sneddon, and D. J. Procter, “Beyond the Pummerer reaction: Recent developments in thionium ion chemistry,” Angew. Chemie - Int. Ed., vol. 49, no. 34, pp. 5832–5844, 2010.
dc.relationD. J. Le Count, “Azepines and their Fused-ring Derivatives,” in Comprehensive Heterocyclic Chemistry II: A Review of the Literature 1982-1995, vol. 9, no. 17, 1996, pp. 1–43.
dc.relationA. K. K, N. Renuka, K. R. Raghavendra, V. K. G, and B. K. Ranjitha, “BENZOTHIAZEPINES-AN OVERVIEW,” Int. J. Basic Appl. Chem. Sci., vol. 5, no. 1, pp. 79–88, 2015.
dc.relationG. R. Mhaske, S. S. Bajod, D. M. Ambhore, and S. N. Shelke, “Synthesis and Evaluation of Novel 1, 5-Benzothiazepine Derivatives as Anti-Inflammatory Agents,” Int. J. Innov. Res. Technol. Sci. Eng., vol. 3, no. 6, pp. 13208–13215, 2014.
dc.relationK. L. Ameta, N. S. Rathore, and B. Kumar, “Synthesis and preliminary evaluation of novel 1, 5-benzothiazepine derivatives as anti-lung cancer agents,” Int. J. Pharm., vol. 3, no. 2, pp. 328–333, 2013.
dc.relationA. P. Gaywood and H. McNab, “Methylene meldrums acid derivatives of indoxyl and their cyclization reactions under flash vacuum pyrolysis conditions,” Synthesis (Stuttg)., no. 8, pp. 1361–1364, 2010.
dc.relationW. Von Der Saal, J. peter Hoick, W. Kampe, A. Mertens, and B. Muller-beckmann, “Nonsteroidal Cardiotonics. 2. The Inotropic Activity of Linear, Tricyclic 5-6-5 Fused Heterocycles,” J. Med. Chem., vol. 32, no. 7, pp. 1481–1491, 1989.
dc.relationG. M. Karp, “Preparation and reactions of indolin-2(3H)-ones. A review,” Org. Prep. Proced. Int., vol. 25, no. 5, pp. 481–513, 1993.
dc.relationA. Mahamadi, P. Parimoo, W. G. Haney, and B. F. Grabowski, “Potential psychoactive indole derivatives II: Synthesis of 5‐alkoxyindolines via reduction of 5‐alkoxy‐2‐indolinones,” J. Pharm. Sci., vol. 62, no. 3, pp. 490–492, 1973.
dc.relationP. G. Gassman, T. J. Van Bergen, and G. Gruetzmacher, “Use of Halogen-Sulfide Complexes in the Synthesis of Indoles, Oxindoles, and Alkylated Aromatic Amines,” J. Am. Chem. Soc., vol. 95, no. 19, pp. 6508–6509, 1973.
dc.relationT. Takeda and A. Tsubouchi, Pummerer Reaction. 2007.
dc.relationY. M. Khetmalis, M. Shivani, S. Murugesan, and K. V. G. Chandra Sekhar, “Oxindole and its derivatives: A review on recent progress in biological activities,” Biomed. Pharmacother., vol. 141, no. June, p. 111842, 2021.
dc.relationS. Yagnam et al., “1,2,3-Triazole derivatives of 3-ferrocenylidene-2-oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation,” Appl. Organomet. Chem., vol. 33, no. 4, pp. 1–15, 2019.
dc.relationM. Kaur, M. Singh, and O. Silakari, “Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: Designing, synthesis and biological evaluation,” Future Med. Chem., vol. 9, no. 11, pp. 1193–1211, 2017.
dc.relationM. Yousuf et al., “Synthesis and biological evaluation of polyhydroxylated oxindole derivatives as potential antileishmanial agent,” Bioorganic Med. Chem. Lett., vol. 28, no. 6, pp. 1056–1062, 2018
dc.relationY. Hirata et al., “Novel Oxindole-Curcumin Hybrid Compound for Antioxidative Stress and Neuroprotection,” ACS Chem. Neurosci., vol. 11, no. 1, pp. 76–85, 2020
dc.relationS. Chander et al., “Hit optimization studies of 3-hydroxy-indolin-2-one analogs as potential anti-HIV-1 agents,” Bioorg. Chem., vol. 79, no. December 2017, pp. 212–222, 2018.
dc.relationN. L. Nam, I. I. Grandberg, V. I. Sorokin, K. A. T. Moscow, A. Academy, and G. Soedinenii, “Synthesis of N1 substituted 5-amino-3-methylpyrazoles,” Chem. Heterocycl. Compd., vol. 36, no. 3, pp. 342–344, 2000.
dc.relationM. Yu, K. Stevenson, and G. Zhou, “N-alkylation of lactams with secondary heterobenzylic bromides,” Tetrahedron Lett., vol. 55, no. 41, pp. 5591–5594, 2014.
dc.relationM. S. Shmidt, A. M. Reverdito, L. Kremenchuzky, and I. A. Perillo, “Simple and Efficient Microwave Assisted N-alkylation of isatin,” Molecules, vol. 13, pp. 831–840, 2008.
dc.relationV. F. Traven and I. V. Ivanov, “New reaction of photoaromatization of aryl- and hetarylpyrazolines,” Russ. Chem. Bull., vol. 57, no. 5, pp. 1063–1069, 2008.
dc.relationP. Mohanty and S. Bhatnagar, “In silico screening to identify inhibitors of growth factor receptor 2-focal adhesion kinase interaction for therapeutic treatment of pathological cardiac hypertrophy,” Assay Drug Dev. Technol., vol. 17, no. 2, pp. 58–67, 2019.
dc.relationH. Yang et al., “AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties,” Bioinformatics, vol. 35, no. 6, pp. 1067–1069, 2019.
dc.relationS. LLC., “PyMOL Molecular Graphic System.” Schrödinger LLC, 2015.
dc.relationM. D. Hanwell, D. E. Curtis, and D. C. Lonie, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” J. Cheminform., vol. 4, p. 17, 2012.
dc.relationMichel F. Sanner., “AutoDock-Tools 1.5.6.” pp. 57–61, 1999.
dc.relationW. Allen et al., “DOCK 6: Impact of New Features and Current Docking Performance,” J. Comput. Chem., vol. 36, no. 15, pp. 1132–1156, 2015.
dc.relationI. P. Lanchero, “Estudio in silico e in vivo de compuestos inhibidores de la enzima lipasa pancreática: una contribución al reposicionamiento de fármcos antiobesidad,” Universidad Nacional de Colombia, 2016.
dc.relationK. Palacio-Rodríguez, I. Lans, C. N. Cavasotto, and P. Cossio, “Exponential consensus ranking improves the outcome in docking and receptor ensemble docking,” Sci. Rep., vol. 9, no. 1, pp. 1–14, 2019.
dc.relationR. Silverstein, F. Webster, and D. Kiemle, Spectrometric identification of organic compunds - 7th ed silverstein 2005.pdf, 7th editio. John Wiley & Sons press, 2005.
dc.relationA. Rammohan, J. Satyanarayana, R. Gundala, S. Chittluri, and N. Rao, “Chalcone synthesis, properties and medicinal applications: a review,” Environ. Chem. Lett., no. 0123456789, 2020.
dc.relationJ. G. Schmidt, “Über die Einwirkung von Aceton Furfurol und auf Bittermandelöl bei Gegenwart von Alkalilauge.,” Berichte der deustchen Chem. Gesellschaft., vol. 14, no. 1, pp. 1459–1461, 1881.
dc.relationD. M. Arnold, M. G. Laporte, S. M. Anderson, and P. Wipf, “Condensation reactions of guanidines with bis-electrophiles: Formation of highly nitrogenous heterocycles,” Tetrahedron, vol. 69, no. 36, pp. 7719–7731, 2013.
dc.relationA. S. Hecht et al., “MULTIFUNCTIONAL RADICAL QUENCHERS AND THEIR USES,” US 8,952,025 B2, 2015.
dc.relationM. Engelmann, “Über eine Synthese des 1-Methyl-xanthins.,” Berichte der deustchen Chem. Gesellschaft., vol. 42, no. 1, pp. 177–182, 1909.
dc.relationA. O. Pushechnikov, D. M. Volochnyuk, and A. A. Tolmachev, “Interaction of izatins with some five-membered aminoheterocycles,” Synlett, no. 7, pp. 1140–1142, 2002.
dc.relationM. Uematsu and E. U. Frank, “Static Dielectric Constant of Water and Steam,” J. Phys. Chem. Ref. Data, vol. 1291, no. 1980, pp. 1291–1306, 1997.
dc.relationA. H. Johnstone, CRC Handbook of Chemistry and Physics-69th Edition, 69 Edition., vol. 50, no. 2. 2007
dc.relationP. W. Khirade, A. Chaudhari, J. B. Shinde, S. N. Helambe, and S. C. Mehrotra, “Static dielectric constant and relaxation time measurements on binary mixtures of dimethyl sulfoxide with ethanol, 2-ethoxyethanol, and propan-1-ol at 293, 303, 313, and 323 K,” J. Chem. Eng. Data, vol. 44, no. 5, pp. 879–881, 1999.
dc.relationU. V. Mardolcar, C. a. Castro, and F. J. V. Nieto De Santos, “Dielectric Benzene Measurements of Toluene The measurements,” Fluid Phase Equilib., vol. 79, pp. 255–264, 1992.
dc.relationK. R. Srinivasan and R. L. Kay, “The Pressure Dependence of the Dielectric Constant and Density of Acetonitrile at Three Temperatures,” vol. 6, no. 5, pp. 357–367, 1977.
dc.relationS. M. Modell and M. H. Lehmann, “The long OT syndrome family of cardiac ion channelopathies: A HuGE review,” Genet. Med., vol. 8, no. 3, pp. 143–155, 2006.
dc.relationX. O. Deng, M. X. Song, S. Ben Wang, and Z. S. Quan, “Synthesis and evaluation of the anticonvulsant activity of 8-alkoxy-4,5-dihydrobenzo b 1,2,4 triazolo 4,3-d 1,4 thiazepine derivatives,” J. Enzyme Inhib. Med. Chem., vol. 29, no. 2, pp. 272–280, 2014.
dc.relationD. A. Paterson, R. A. Conradi, A. R. Hilgers, T. J. Vidmar, and P. S. Burton, “A Non‐aqueous Partitioning System for Predicting the Oral Absorption Potential of Peptides,” Quant. Struct. Relationships, vol. 13, no. 1, pp. 4–10, 1994.
dc.relationJ. Morelli, “PRESCRIPTION ANXIETY MEDICATIONS.” Online. Available: https://www.rxlist.com/anxiety_medications/drugs-condition.htm.
dc.relationI. Fleming, Orbital interaction theory of organic chemistry. Arvi Rauk. 2nd edn. John Wiley & Sons, Ltd, Chichester, 2001. xv?+?343 pages. 67.50. ISBN 0-471-35833-9, vol. 15, no. 10. 2001.
dc.relationG. Broggini, L. Garanti, G. Molteni, T. Pilati, A. Ponti, and G. Zecchi, “Stereoselective intramolecular cycloadditions of homochiral nitrile imines: Synthesis of enantiomerically pure 3,3a-dihydro-pyrazolo1,5-a 1,4 benzodiazepine-6(4H)-ones,” Tetrahedron Asymmetry, vol. 10, no. 11, pp. 2203–2212, 1999.
dc.relationM. F. El-zohry, I. M. A. Awad, and A. A. Abdel-hafez, “Spiroheterocycles Related to 1-oxa- 4-thiaspiro 4.4 nonan-2-one and 1-oxa-4-thiospiro 4.5 decan-2-one,” Arch. Pharm. (Weinheim)., vol. 326, pp. 115–118, 1993.
dc.relationY. Loidreau et al., “Synthesis and biological evaluation of N-arylbenzo b thieno 3,2-d pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors,” Eur. J. Med. Chem., vol. 58, pp. 171–183, 2012.
dc.relationE. Perspicace et al., “Design, synthesis and biological evaluation of new classes of thieno 3,2-d pyrimidinone and thieno 1,2,3 triazine as inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2),” Eur. J. Med. Chem., vol. 63, pp. 765–781, 2013.
dc.relationT. Michal, P. Radek, Y. X. Hao, C. Yen-Liang, Y. Fumiaki, and S. PeiYong, “Synthesis and Antiviral Activity of 4,6-Disubstituted Pyrimido 4,5-b indole Ribonucleosides,” Bioorg. Med. Chem., vol. 20, no. 20, pp. 6123–6133, 2012.
dc.relationP. D. Neuenfeldt, B. B. Drawanz, W. Cunico, E. R. T. Tiekink, J. L. Wardell, and S. M. S. V. Wardell, “4-(Pyrimidin-2-yl)-1-thia-4-azaspiro- 4.5 decan-3-one,” Acta Crystallogr. Sect. E Struct. Reports Online, vol. 65, no. 12, 2009.
dc.relationA. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant, and A. Loupy, “Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro indole-thiazolidinones as potent antifungal agents and crystal structure of spiro 3H-indole- 3,2-thiazolidine- 3(1,2,4-triazol-3-yl)-2,4 (1H)-dione,” Bioorganic Med. Chem., vol. 14, no. 7, pp. 2409–2417, 2006.
dc.relationL. Claisen and A. Claparede, “Condensationen von Ketonen mit Aldehyden" Condensations of ketones with aldehydes,” Berichte der Dtsch. Chem. Gesellschaft, vol. 14, no. 1, pp. 2460–2468, 1881.
dc.relationH. Chen and D. Shi, “Efficient one-pot synthesis of spiro[indoline-3,4-pyrazolo 3,4-e 1, 4 thiazepine dione via three-component reaction,” Tetrahedron, vol. 67, no. 31, pp. 5686– 5692, 2011.
dc.relationC. Becerra-Rivas, P. Cuervo-Prado, and F. Orozco-Lopez, “Efficient catalyst-free tricomponent synthesis of new spiro cyclohexane-1,4-pyrazolo 3,4-e 1, 4 thiazepin- 7(6H)-ones,” Synth. Commun., vol. 49, no. 3, pp. 367–376, Feb. 2019.
dc.relationU. R. Mane et al., “Pyrido 1,2-a pyrimidin-4-ones as antiplasmodial falcipain-2 inhibitors,” Bioorganic Med. Chem., vol. 20, no. 21, pp. 6296–6304, 2012.
dc.relationM. R. Shiradkar et al., “Synthesis and anticonvulsant activity of clubbed thiazolidinonebarbituric acid and thiazolidinone-triazole derivatives,” Arkivoc, vol. 2007, no. 14, pp. 58–74, 2007.
dc.relationA. A. Bekhit, H. M. A. Ashour, Y. S. Abdel Ghany, A. E. D. A. Bekhit, and A. Baraka, “Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1Hpyrazole as anti-inflammatory antimicrobial agents,” Eur. J. Med. Chem., vol. 43, no. 3, pp. 456–463, 2008.
dc.relationY. Motoyama, K. Kamo, and H. Nagashima, “Catalysis in polysiloxane gels: Platinumcatalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes,” Org. Lett., vol. 11, no. 6, pp. 1345–1348, 2009.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDiseño racional y síntesis de derivados heterocíclicos azufrados y nitrogenados con potencial actividad farmacológica sobre canales iónicos reguladores de las señales nerviosas
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución