dc.contributor | López Kleine, Liliana | |
dc.creator | Acero Baena, Juan Pablo | |
dc.date.accessioned | 2023-08-08T14:29:39Z | |
dc.date.accessioned | 2023-08-25T14:13:54Z | |
dc.date.available | 2023-08-08T14:29:39Z | |
dc.date.available | 2023-08-25T14:13:54Z | |
dc.date.created | 2023-08-08T14:29:39Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84474 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8427069 | |
dc.description.abstract | La secuenciación de genomas ha permitido aumentar el conocimiento en varios aspectos de la biología
de los organismos. Una de las principales ramas que ha surgido es el estudio de asociación del genoma completo
(Genome Wide Association Studies, GWAS), el cual ha permitido por medio de la asociación entre
genotipos y fenotipos, identificar aspectos genotípicos relacionados con enfermedades complejas tales como
el Alzheimer , la diabetes, el cáncer, entre otras.
Originalmente, la mayor parte de estos estudios se han realizado para un solo fenotipo, por esta razón, tomando
como base la metodología presentada por Guo y Wu, 2018 se evaluaron las asociaciones entre genotipos y
fenotipos múltiples aplicando los métodos Principal Component Based Association Test, denotado como ET,
Omnibus Test (OT) y Adaptative Test (AT), sobre tres bases de datos reales y un set de datos simulados
binarios correlacionados. Así mismo, se evaluaron los desempeños de las metodologías comparándolas entre
sí, teniendo en cuenta su capacidad para rechazar la mayor cantidad de hipótesis en pruebas múltiples y la
potencia en los datos simulados.
La comparación y caracterización de los métodos permitió establecer un flujo de trabajo óptimo, una
identificación de los puntos positivos y negativos de cada una de las metodologias probadas. Igualmente,
en la aplicación a bases de datos reales y simuladas se identificaron los aspectos a considerar para tener un
m´etodo más sensible y específico. Se evaluó la mejora propuesta que consistió en la inclusión de la frecuencia
y proporción de los alelos raros de cada SNP en el método AT. Estos resultados permitieron observar una
mejora en la potencia del método AT, demostrando que la inclusión de dicha frecuencia es un insumo
importante para detectar una mejor asociación entre un fenotipo y un genotipo. (Texto tomado de la fuente) | |
dc.description.abstract | Genome sequencing has increased knowledge in various aspects of the biology of organisms. One of the
main branches that has emerged is the Genome Wide Association Studies (GWAS), which has allowed,
through the association between genotypes and phenotypes, to identify genotypic aspects related to complex
diseases such as Alzheimer’s, diabetes, cancer, among others, to identify genotypic aspects related to complex diseases such as Alzheimer’s disease, diabetes, cancer, among others.
Originally, most of these studies have been performed for a single phenotype, for this reason, taking as
a basis the methodology presented by Guo y Wu, 2018, the associations between genotypes and multiple
phenotypes were evaluated by applying the methods ¨textitPrincipal Component Based Association Test,
denoted as ET, Omnibus Test (OT) and Adaptative Test (AT), on three real datasets and a correlated binary
simulated dataset. The performance of the methodologies was also evaluated by comparing them with each
other, taking into account their ability to reject the largest number of hypotheses in multiple testing and
the power in the simulated data.
The comparison and characterization of the methods allowed establishing an optimal workflow, an identification of the positive and negative points of each of the tested methodologies. Likewise, in the application
to real and simulated databases, the aspects to be considered in order to have a more sensitive and specific
method were identified. The proposed improvement that consisted in the inclusion of the frequency and
proportion of rare alleles of each SNP in the AT method was evaluated. These results allowed observing
an improvement in the power of the AT method, demonstrating that the inclusion of such frequency is an
important input to detect a better association between a phenotype and a genotype | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Estadística | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agresti, A. (2015). Foundations of linear and generalized linear models. John Wiley & Sons Inc. | |
dc.relation | Andrews, S. J., Fulton-Howard, B., & Goate, A. (2020). Interpretation of risk loci from genome-wide association
studies of Alzheimer’s disease. The Lancet Neurology, 19, 326-335. https://doi.org/10.1016/
s1474-4422(19)30435-1 | |
dc.relation | Benafif, S., Kote-Jarai, Z., & Eeles, R. A. (2018). A Review of Prostate Cancer Genome-Wide Association
Studies (GWAS). Cancer Epidemiology Biomarkers Prevention, 27, 845-857. https://doi.org/10.
1158/1055-9965.epi-16-1046 | |
dc.relation | Boca, S. M., & Leek, J. T. (2015). A direct approach to estimating false discovery rates conditional on
covariates. bioRxiv. https://doi.org/10.1101/035675 | |
dc.relation | Carlos Fang-Mercado, L., Urrego-´Alvarez, J., Andr´es, E., Merlano-Bar´on, Meza-Torres, C., Hern´andez-
Bonfante, L., L´opez-Kleine, L., & Marrugo-Cano, J. (2017). Art´ıculo original Influence of lifestyle,
diet and vitamin D on atopy in a population of Afro-descendant Colombian children. Rev Alerg Mex,
64, 277-290. | |
dc.relation | Chul, G., Park, T., Park, D., & Shin. (1996). A Simple Method for Generating Correlated Binary Variates A
Simple Method for Generating Correlated Binary Variates. Source: The American Statistician, 50,
306-310. | |
dc.relation | Cortés Muñoz, F. (2019). Methodology for estimating association between categorical variables with application
to Genome-wide association studies (GWAS) (Tesis doctoral). | |
dc.relation | Dudoit, S., Gilbert, H. N., & van der Laan, M. J. (2008). Resampling-Based Empirical Bayes Multiple
Testing Procedures for Controlling Generalized Tail Probability and Expected Value Error Rates:
Focus on the False Discovery Rate and Simulation Study. Biometrical Journal, 50, 716-744. https:
//doi.org/10.1002/bimj.200710473 | |
dc.relation | Ehret, G. B. (2010). Genome-Wide Association Studies: Contribution of Genomics to Understanding Blood
Pressure and Essential Hypertension. Current hypertension reports, 12, 17-25. https://doi.org/10.
1007/s11906-009-0086-6 | |
dc.relation | Emrich, L. J., & Piedmonte, M. R. (1991). A Method for Generating High-Dimensional Multivariate Binary
Variates. The American Statistician, 45, 302. https://doi.org/10.2307/2684460 | |
dc.relation | Fernández-Santiago, R., & Sharma, M. (2022). What have we learned from genome-wide association studies
(GWAS) in Parkinson disease? Ageing Research Reviews, 101648. https://doi.org/10.1016/j.arr.
2022.101648 | |
dc.relation | Fang-Mercado, L. C., Urrego- Álvarez, J. R., Merlano-Barón, A. E., Meza-Torres, C., Hernández-Bonfante,
L., López-Kleine, L., & Marrugo-Cano, J. (2017). Influencia del estilo de vida, la dieta y la vitamina
D en la atopia en niños colombianos afrodescendientes. Revista Alergia México, 64, 277. https :
//doi.org/10.29262/ram.v64i3.275 | |
dc.relation | Frayling, T. M. (2007). Genome–wide association studies provide new insights into type 2 diabetes aetiology.
Nature Reviews Genetics, 8, 657-662. https://doi.org/10.1038/nrg2178 | |
dc.relation | Gibbons, J. D., & Chakraborti, S. (2021). Nonparametric statistical inference. Crc Press. | |
dc.relation | Guide, G. G. U. (s.f.). Manhattan Plot. www.jmp.com. Consultado el 19 de junio de 2023, desde https://www.
jmp.com/support/downloads/JMPG101 documentation/Content/JMPGUserGuide/GR G 0022.
htm | |
dc.relation | Guo, B., & Wu, B. (2018). Integrate multiple traits to detect novel trait–gene association using GWAS
summary data with an adaptive test approach (R. Schwartz, Ed.). Bioinformatics, 35, 2251-2257.
https://doi.org/10.1093/bioinformatics/bty961 | |
dc.relation | Johnson, R. A., & Wichern, D. W. (2019). Applied multivariate statistical analysis. Pearson. | |
dc.relation | Liu, Z., & Lin, X. (2017). Multiple phenotype association tests using summary statistics in genome-wide
association studies. Biometrics, 74, 165-175. https://doi.org/10.1111/biom.12735 | |
dc.relation | Loos, R. J. F. (2020). 15 years of genome-wide association studies and no signs of slowing down. Nature
Communications, 11. https://doi.org/10.1038/s41467-020-19653-5 | |
dc.relation | Otto, L.-G., Mondal, P., Brassac, J., Preiss, S., Degenhardt, J., He, S., Reif, J. C., & Sharbel, T. F. (2017). Use
of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile,
and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association
mapping. BMC Genomics, 18. https://doi.org/10.1186/s12864-017-3991-0 | |
dc.relation | MedlinePlus. (2022). ¿Cuáles son los riesgos y las limitaciones de las pruebas genéticas: MedlinePlus Genetics.
medlineplus.gov. https://medlineplus.gov/spanish/genetica/entender/pruebas/riesgoslimitaciones/ | |
dc.relation | Parra-Galindo, M.-A., Piñeros-Niño, C., Soto-Sedano, J. C., & Mosquera-Vasquez, T. (2019). Chromosomes
I and X Harbor Consistent Genetic Factors Associated with the Anthocyanin Variation in Potato.
Agronomy, 9, 366. https://doi.org/10.3390/agronomy9070366 | |
dc.relation | Ravishanker, N., & Dey, D. K. (2020). A First Course in Linear Model Theory. CRC Press. | |
dc.relation | Rowan, B. A., Seymour, D. K., Chae, E., Lundberg, D. S., & Weigel, D. (2016). Methods for Genotyping-by-
Sequencing. Methods in Molecular Biology, 221-242. https://doi.org/10.1007/978-1-4939-6442-0 16 | |
dc.relation | Sevilla, S. D. (2023). Metodolog´ıa de los estudios de asociación genética. Insuficiencia cardíaca, 2, 111-114.
Consultado el 6 de junio de 2023, desde http://www.scielo.org.ar/scielo.php?script=sci arttext&
pid=S1852-38622007000300006 | |
dc.relation | Shaffer, J., Feingold, E., & Marazita, M. (2012). Genome-wide Association Studies. Journal of Dental Research,
91, 637-641. https://doi.org/10.1177/0022034512446968 | |
dc.relation | Shim, H., Chasman, D. I., Smith, J. D., Mora, S., Ridker, P. M., Nickerson, D. A., Krauss, R. M., & Stephens,
M. (2015). A Multivariate Genome-Wide Association Analysis of 10 LDL Subfractions, and Their
Response to Statin Treatment, in 1868 Caucasians (P. Aspichueta, Ed.). PLOS ONE, 10, e0120758.
https://doi.org/10.1371/journal.pone.0120758 | |
dc.relation | Stephens, M. (2013). A Unified Framework for Association Analysis with Multiple Related Phenotypes (F.
Emmert-Streib, Ed.). PLoS ONE, 8, e65245. https://doi.org/10.1371/journal.pone.0065245 | |
dc.relation | VanRaden, P. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science, 91,
4414-4423. https://doi.org/10.3168/jds.2007-0980 | |
dc.relation | Wang, K., Zhang, H.-T., Kugathasan, S., Annese, V., Bradfield, J. P., Russell, R. K., Imielinski, M., Glessner,
J. T., Hou, C., Wilson, D., Walters, T. D., Kim, C. E., Frackelton, E. C., Lionetti, P., Barabino,
A., Limbergen, J. V., Guthery, S. L., Denson, L. A., . . . Hakonarson, H. (2009). Diverse Genomewide
Association Studies Associate the IL12/IL23 Pathway with Crohn Disease. 84, 399-405. https:
//doi.org/10.1016/j.ajhg.2009.01.026 | |
dc.relation | Weighill, D., Jones, P., Bleker, C., Ranjan, P., Shah, M., Zhao, N., Martin, M., DiFazio, S., Macaya-Sanz, D.,
Schmutz, J., Sreedasyam, A., Tschaplinski, T., Tuskan, G., & Jacobson, D. (2019). Multi-Phenotype
Association Decomposition: Unraveling Complex Gene-Phenotype Relationships. Frontiers in Genetics,
10. https://doi.org/10.3389/fgene.2019.00417 | |
dc.relation | Zhu, X., & Stephens, M. (2017). Bayesian large-scale multiple regression with summary statistics from
genome-wide association studies. The Annals of Applied Statistics, 11, 1561-1592. https://doi.org/
10.1214/17-aoas1046 | |
dc.relation | Zhu, X., Feng, T., Tayo, B. O., Liang, J., Young, J. H., Franceschini, N., Smith, J. A., Yanek, L. R., Sun,
Y. V., Edwards, T. L., Chen, W., Nalls, M., Fox, E., Sale, M., Bottinger, E., Rotimi, C., Liu, Y.,
McKnight, B., Liu, K., . . . Redline, S. (2015). Meta-analysis of Correlated Traits via Summary
Statistics from GWASs with an Application in Hypertension. The American Journal of Human
Genetics, 96, 21-36. https://doi.org/10.1016/j.ajhg.2014.11.011 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Métodos para identificar asociaciones entre genotipos y múltiples fenotipos | |
dc.type | Trabajo de grado - Maestría | |