dc.contributor | Restrepo-Parra, Elisabeth | |
dc.contributor | Laboratorio de física del plasma | |
dc.contributor | Alzate Acevedo, Natalia [0000-0002-7557-6771] | |
dc.creator | Alzate Acevedo, Natalia | |
dc.date.accessioned | 2023-08-14T22:02:08Z | |
dc.date.accessioned | 2023-08-25T13:58:31Z | |
dc.date.available | 2023-08-14T22:02:08Z | |
dc.date.available | 2023-08-25T13:58:31Z | |
dc.date.created | 2023-08-14T22:02:08Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84558 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8427040 | |
dc.description.abstract | El desempeño de los biomateriales con aplicaciones en implantes depende tanto de su composición elemental, como de la formación de la superficie, por lo que es importante además del material a emplear, establecer la composición ideal que debe tener la superficie, al entrar en contacto con microorganismos. Ante esto, las biocerámicas como la Hidroxiapatita son de gran interés en la industria biomédica, debido a que su composición química es muy similar a la parte mineral de los tejidos óseos, por lo que en contacto con sistemas vivos tiene una respuesta biológica favorable; aunque no tiene las propiedades mecánicas adecuadas al momento de funcionar como un implante.
Es a partir de esto, que se emplean materiales como titanio y sus aleaciones, para el andamiaje de esto implantes. Sin embargo, a pesar de esto la respuesta bioactiva en sistemas vivos no es la óptima. Es por esto, que este trabajo investigativo desarrolló la modificación superficial de sustratos de Ti puro a través de OEP (Oxidación electrolítica por plasma) e hidrotermal, con la aplicación de hidroxiapatita ovina y su posterior evaluación por técnicas electroquímicas en una solución electrolítica de fluido biológico simulado. Para ello, se realizó una primera deposición de semillas de HAp por medio de OEP y la formación de TiO2, y posteriormente se procedió a la aplicación de proceso HT con el que se realizó un crecimiento ordenado de las diferentes hidroxiapatitas (T600 °C, T800 °C, 1000 °C y comercial) sobre la superficie de TiO2. Las muestran fueron caracterizadas por DRX, MEB-EDX, donde se observó el ordenamiento y formación de la hidroxiapatita de las semillas depositadas previamente OEP, de las difractogramas, al igual que se observó que las muestra con el que se llevó a cabo el proceso hidrotermal muestran una hidroxiapatita cristalina. Finalmente, se hizo evaluaciones electroquímicas, donde los resultados arrojaron una mejora de las muestras que sólo fueron tratadas con OEP a las que fueron tratadas combinando las técnicas de OEP e HT. Adicionalmente la muestra T800 °C mostró una mejora significativa en comparación con las otras tres muestras en cuanto a la velocidad de corrosión y la resistencia a la polarización. (Texto tomado de la fuente) | |
dc.description.abstract | The performance of biomaterials with applications in implants depends both on their elemental composition and on the formation of the surface, so it is important, in addition to the material to be used, the ideal composition that the surface should have when in contact with microorganisms. Bioceramics materials such as hydroxyapatite have great interest in biomedicine because their chemical composition is very similar to the mineral part of bone tissues, so that in contact with living systems, they have a favorable biological response, but do not have adequate mechanical properties when working as an implant. Due to this those materials such as Ti and Ti alloys are used for the scaffolding of these implants. Despite this, the bioactive response in living systems is not optimal. For this reason, in this work we developed the surface modification of pure Ti substrates through Plasma Electrolytic Oxidation (PEO) and hydrothermal treatment (HT), with the application of ovine hydroxyapatite and its subsequent evaluation by electrochemical techniques in an electrolytic solution of simulated biological fluid. For this purpose, a first HAP seed deposition was carried out by means of PEO, followed by the application of HT process which allowed an ordered growth of different hydroxyapatites (T600 °C, T800 °C, T1000 °C and commercial) on the TiO2 surface. The samples were characterized by DRX, SEM-EDX, where it was observed the ordering and formation of the hydroxyapatite of the seeds previously deposited PEO, from the DRX patterns was observed that the samples that had the hydrothermal process showed a crystalline hydroxyapatite. Finally, electrochemical evaluations were performed, where the results showed an improvement of the samples that were treated with PEO comparing to those that were treated combining the PEO and HT techniques. Additionally, the T800 °C sample showed a significant improvement compared to the other three samples in terms of corrosion rate and polarization resistance. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Manizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Física | |
dc.publisher | Facultad de Ciencias Exactas y Naturales | |
dc.publisher | Manizales, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Manizales | |
dc.relation | C. Peniche, Y. Solís, N. Davidenko, and R. García, “Materiales compuestos de quitosana e hidroxiapatita,” Biotecnologia Aplicada, vol. 27, no. 3, 2010. | |
dc.relation | La Asociación Colombiana de Osteoporosis-Caracol Radio, “La Asociación Colombiana de Osteoporosis presentó el II Consenso Colombiano de Osteoporosis | Sanamente | Caracol Radio,” 2017. https://caracol.com.co/programa/2017/09/08/sanamente/1504900428_897168.html (accessed oct. 04, 2021). | |
dc.relation | J. L. A. T. FUENTES, “Obtención y caracterización de hidroxiapatita porosa a partir de cáscara de huevo y tunicina,” 2010. | |
dc.relation | Y. J. Mata Cocoletzi, “Caracterización estructural, microestructural y química durante el proceso para obtener Hidroxiapatia a partir de hueso de bovino,” Thesis, p. 101, 2016. | |
dc.relation | S. I. Eguía, “Estudio microestructural de partículas de hidroxiapatita crecidas sobre geles de sílice,” Universida Autonoma de Nuevo leon, vol. 1, p. 65, 2019. | |
dc.relation | E. A. Ofudje, A. Rajendran, A. I. Adeogun, M. A. Idowu, S. O. Kareem, and D. K. Pattanayak, “Synthesis of organic derived hydroxyapatite scaffold from pig bone waste for tissue engineering applications,” Advanced Powder Technology, vol. 29, no. 1, pp. 1–8, 2018, doi: 10.1016/j.apt.2017.09.008. | |
dc.relation | D. A. Florea, D. Albuleț, A. M. Grumezescu, and E. Andronescu, “Surface modification – A step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties,” Materials Chemistry and Physics, vol. 243, no. August 2019, p. 122579, 2020, doi: 10.1016/j.matchemphys.2019.122579. | |
dc.relation | D. N. Ungureanu, N. Angelescu, R. M. Ion, E. V. Stoian, and C. Z. Rizescu, “Synthesis and characterization of hydroxyapatite nanopowders by chemical precipitation,” 10th WSEAS International Conference on EHAC’11 and ISPRA’11, 3rd WSEAS Int. Conf. on Nanotechnology, Nanotechnology’11, 6th WSEAS Int. Conf. on ICOAA’11, 2nd WSEAS Int.Conf. on IPLAFUN’11, no. September 2015, pp. 296–301, 2011. | |
dc.relation | M. V. Garcia Garduño and J. Reyes Gasga, “Disponible en: http://www.redalyc.org/articulo.oa?id=43211937005,” TIP Revista especializada en ciencias químico-biológicas, vol. 9, no. 2, pp. 90–95, 2006. | |
dc.relation | S. A. Adeleke et al., “The properties of hydroxyapatite ceramic coatings produced by plasma electrolytic oxidation,” Ceram Int, vol. 44, no. 2, pp. 1802–1811, 2018, doi: 10.1016/j.ceramint.2017.10.114. | |
dc.relation | L. R. Rivera, “Efecto de la biofuncionalización superficial en la formación de matriz extracelular MEC sobre un recubrimiento vitrocerámico con morfología controlada crecido sobre Ti6Al4V,” 2013. | |
dc.relation | M. Fazel, H. R. Salimijazi, M. Shamanian, I. Apachitei, and A. A. Zadpoor, “Influence of hydrothermal treatment on the surface characteristics and electrochemical behavior of Ti-6Al-4V bio-functionalized through plasma electrolytic oxidation,” Surface and Coatings Technology, vol. 374, no. May, pp. 222–231, 2019, doi: 10.1016/j.surfcoat.2019.05.088. | |
dc.relation | C. A. Carvalho Zavaglia, R. F. Silva, S. A. Santos, and C. R. Pelliciari de Lima, “Caracterización de recubrimientos de hidroxiapatita depositadas sobre la aleación Ti6Al7Nb a través de aspersión térmica a plasma,” Biomecánica, vol. 8, no. 1, pp. 49–53, 2000, doi: 10.5821/sibb.v8i1.1646. | |
dc.relation | C. J. Chung, R. T. Su, H. J. Chu, H. Te Chen, H. K. Tsou, and J. L. He, “Plasma electrolytic oxidation of titanium and improvement in osseointegration,” Journal of Biomedical Materials Research - Part B Applied Biomaterials, vol. 101 B, no. 6, pp. 1023–1030, 2013, doi: 10.1002/jbm.b.32912. | |
dc.relation | E. Peón, A. Jiménez Morales, E. Fernández-Escalante, M. C. García-Alonso, M. L. Escudero, and J. C. Galván, “Recubrimientos de hidroxiapatita preparados mediante un proceso sol-gel,” Revista de Metalurgia, vol. 41, no. Extra, pp. 479–482, 2005, doi: 10.3989/revmetalm.2005.v41.iextra.1080. | |
dc.relation | H. Melero, J. Fernández, and J. M. Guilemany, “Recubrimientos bioactivos: Hidroxiapatita y titania,” Biomecánica, vol. 19, pp. 35–48, 2011. | |
dc.relation | H. El Boujaady, M. Mourabet, A. EL Rhilassi, M. Bennani-Ziatni, R. El Hamri, and A. Taitai, “Adsorption of a textile dye on synthesized calcium deficient hydroxyapatite (CDHAp): Kinetic and thermodynamic studies,” Journal of Materials and Environmental Science, vol. 7, no. 11, pp. 4049–4063, 2016. | |
dc.relation | A. Chandrasekar, S. Sagadevan, and A. Dakshnamoorthy, “Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique,” International Journal of Physical Sciences, vol. 8, no. 32, pp. 1639–1645, 2013, doi: 10.5897/IJPS2013.3990. | |
dc.relation | M. I. Ochoa Gómez, “Síntesis Y Caracterización De Polvos De Hidroxiapatita Carbonatada Tipo B Con Diferentes Contenidos De Carbonato,” Revista Colombiana de Materiales, no. 17, pp. 22–32, 2021, doi: 10.17533/udea.rcm.n17a03. | |
dc.relation | A. M. Janus, M. Faryna, K. Haberko, A. Rakowska, and T. Panz, “Chemical and microstructural characterization of natural hydroxyapatite derived from pig bones,” Microchimica Acta, vol. 161, no. 3–4, pp. 349–353, 2008, doi: 10.1007/s00604-007-0864-2. | |
dc.relation | R. Furlong, “The Furlong® Hydroxyapatite Ceramic Coated Total Hip Prosthesis,” HIP International, vol. 2, no. 2, pp. 37–42, Apr. 1992, doi: 10.1177/112070009200200201. | |
dc.relation | R. Geesink, K. de G.-C. O. and, and undefined 1987, “Chemical implant fixation using hydroxyl-apatite coatings: the development of a human total hip prosthesis for chemical fixation to bone using hydroxyl-apatite,” researchgate.net. | |
dc.relation | V. Uskoković, “Ion-doped hydroxyapatite: An impasse or the road to follow?,” Ceramics International, vol. 46, no. 8, pp. 11443–11465, 2020, doi: 10.1016/j.ceramint.2020.02.001. | |
dc.relation | I. V. Antoniac, Handbook of bioceramics and biocomposites. 2016. doi: 10.1007/978-3-319-12460-5. | |
dc.relation | S. Marković et al., “Synthetical bone-like and biological hydroxyapatites: A comparative study of crystal structure and morphology,” Biomedical Materials, vol. 6, no. 4, 2011, doi: 10.1088/1748-6041/6/4/045005. | |
dc.relation | S. Aliasghari, “Plasma electrolytic oxidation of titanium,” p. 223, 2014. | |
dc.relation | D. A. Torres-Cerón, E. Restrepo-Parra, and R. Ospina-Ospina, “Producción de recubrimientos de TiO2 mediante oxidación electrolítica por plasma (PEO), para posibles aplicaciones tecnológicas,” 2020. | |
dc.relation | J. M. Bennett et al., “Comparison of the properties of titanium dioxide films prepared by various techniques,” Applied Optics, vol. 28, no. 16, p. 3303, 1989, doi: 10.1364/ao.28.003303. | |
dc.relation | K. Q. Alvarez, “Síntesis de cordierita a partir de hidroxihidrogeles bajo tratamiento hidrotermal.,” pp. 1–110, 2012. | |
dc.relation | A. Ruffini, S. Sprio, L. Preti, and A. Tampieri, “Synthesis of Nanostructured Hydroxyapatite via Controlled Hydrothermal Route,” Biomaterial-supported Tissue Reconstruction or Regeneration, May 2019, doi: 10.5772/INTECHOPEN.85091. | |
dc.relation | Y. G. Morales, “Síntesis, caracterización y evaluación de la bioactividad de biomateriales compuestos de hidroxiapatita carbonatada/hidroxiapatita estequiométrica de alta cristalinidad,” Universidad de Sonora, 2019. | |
dc.relation | A. M. Hend S. Magar, Rabeay Y. A. Hassan, “Electrochemical Impedance Spectroscopy (EIS)_ Principles, Construction, and Biosensing Applications _ Enhanced Reader.pdf.” 2021. | |
dc.relation | “Resistencia a la polarización.” https://www.gamry.com/Framework Help/HTML5 - Tripane - Audience A/Content/EIS/Theory/Physical Electrochemistry and Circuit Elements/Polarization Resistance.htm (accessed Aug. 01, 2022). | |
dc.relation | F. Mansfeld, “Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves,” Corrosion Science, vol. 47, no. 12, pp. 3178–3186, Dec. 2005, doi: 10.1016/J.CORSCI.2005.04.012. | |
dc.relation | D. Jiménez Trujillo, “Determinación de la velocidad de corrosión de un bronce comercial en contacto con una mezcla de etanol- gasolina mediante técnicas electroquímicas,” Universidad Tecnologica de Pereira, 2016. | |
dc.relation | P. A. F. Sossa, B. S. Giraldo, B. C. G. Garcia, E. R. Parra, and P. J. A. Arango, “Comparative study between natural and synthetic hydroxyapatite: Structural, morphological and bioactivity properties,” Revista Materia, vol. 23, no. 4, 2018, doi: 10.1590/s1517-707620180004.0551. | |
dc.relation | Q. Luo, Q. Cai, X. Li, and X. Chen, “Characterization and photocatalytic activity of large-area single crystalline anatase TiO2 nanotube films hydrothermal synthesized on Plasma electrolytic oxidation seed layers,” Journal of Alloys and Compounds, vol. 597, pp. 101–109, Jun. 2014, doi: 10.1016/J.JALLCOM.2014.01.216. | |
dc.relation | D. A. Torres-Ceron, E. Restrepo-Parra, C. D. Acosta-Medina, D. Escobar-Rincon, and R. Ospina-Ospina, “Study of duty cycle influence on the band gap energy of TiO2/P coatings obtained by PEO process,” Surf Coat Technol, vol. 375, pp. 221–228, Oct. 2019, doi: 10.1016/J.SURFCOAT.2019.06.021. | |
dc.relation | T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?,” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006, doi: 10.1016/j.biomaterials.2006.01.017. | |
dc.relation | S. T. D. Ellingham, T. J. U. Thompson, and M. Islam, “Thermogravimetric analysis of property changes and weight loss in incinerated bone,” Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 438, pp. 239–244, 2015, doi: 10.1016/j.palaeo.2015.08.009. | |
dc.relation | A. Niakan et al., “Sintering behaviour of natural porous hydroxyapatite derived from bovine bone,” Ceramics International, vol. 41, no. 2, pp. 3024–3029, 2015, doi: 10.1016/j.ceramint.2014.10.138. | |
dc.relation | A. Heredia, I. De F, I. De F, and C. De F, “Thermal analysis study of human bone,” vol. 8, pp. 4777–4782, 2003. | |
dc.relation | S. M. Londoño-Restrepo, C. F. Ramirez-Gutierrez, A. del Real, E. Rubio-Rosas, and M. E. Rodriguez-García, “Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air,” Journal of Materials Science, vol. 51, no. 9, pp. 4431–4441, 2016, doi: 10.1007/s10853-016-9755-4. | |
dc.relation | E. Barua et al., “Effect of thermal treatment on the physico-chemical properties of bioactive hydroxyapatite derived from caprine bone bio-waste,” Ceramics International, vol. 45, no. 17, pp. 23265–23277, 2019, doi: 10.1016/j.ceramint.2019.08.023. | |
dc.relation | C. F. Ramirez-Gutierrez, S. M. Londoño-Restrepo, A. del Real, M. A. Mondragón, and M. E. Rodriguez-García, “Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone,” Ceramics International, vol. 43, no. 10, pp. 7552–7559, 2017, doi: 10.1016/j.ceramint.2017.03.046. | |
dc.relation | C. M. Antonie Zazzo, Jean-Francois Saliégie, Mathieu Lebon, Sébastiab Lepetz, “Radiocarbon dating of calcined bones: insights from combustion experiments undes natural conditions,” Nature, vol. 388. pp. 539–547, 2021. | |
dc.relation | W. Khoo, F. M. Nor, H. Ardhyananta, and D. Kurniawan, “Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures,” Procedia Manufacturing, vol. 2, no. February, pp. 196–201, 2015, doi: 10.1016/j.promfg.2015.07.034. | |
dc.relation | Liga Berzina-Cimdina and Natalija Borodajenko, “Research of calcium phosphates using FTIR spectroscopy.pdf,” pp. 127–134, 2012. | |
dc.relation | A. Ślósarczyk, Z. Paszkiewicz, and C. Paluszkiewicz, “FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods,” Journal of Molecular Structure, vol. 744–747, no. SPEC. ISS., pp. 657–661, 2005, doi: 10.1016/j.molstruc.2004.11.078. | |
dc.relation | D. J. Indrani, B. Soegijono, W. A. Adi, and N. Trout, “Phase composition and crystallinity of hydroxyapatite with various heat treatment temperatures,” International Journal of Applied Pharmaceutics, vol. 9, no. Special Issue 2, pp. 87–91, 2017, doi: 10.22159/ijap.2017.v9s2.21. | |
dc.relation | A. Z. Alshemary, M. Akram, Y. F. Goh, M. R. Abdul Kadir, A. Abdolahi, and R. Hussain, “Structural characterization, optical properties and in vitro bioactivity of mesoporous erbium-doped hydroxyapatite,” Journal of Alloys and Compounds, vol. 645, no. May, pp. 478–486, 2015, doi: 10.1016/j.jallcom.2015.05.064. | |
dc.relation | M. Bohner, “Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements,” Injury, vol. 31, no. SUPPL. 4, 2000, doi: 10.1016/S0020-1383(00)80022-4. | |
dc.relation | A. M. Castillo-Paz, S. M. Londoño-Restrepo, L. Tirado-Mejía, M. A. Mondragón, and M. E. Rodríguez-García, “Nano to micro size transition of hydroxyapatite in porcine bone during heat treatment with low heating rates,” Progress in Natural Science: Materials International, vol. 30, no. 4, pp. 494–501, 2020, doi: 10.1016/j.pnsc.2020.06.005. | |
dc.relation | T. H. Aneem, S. K. Saha, R. A. Jahan, S. Y. Wong, X. Li, and M. T. Arafat, “Effects of organic modifiers and temperature on the synthesis of biomimetic carbonated hydroxyapatite,” Ceramics International, vol. 45, no. 18, pp. 24717–24726, Dec. 2019, doi: 10.1016/J.CERAMINT.2019.08.211. | |
dc.relation | W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Applied Physics A: Materials Science and Processing, vol. 66, no. 6, pp. 621–627, 1998, doi: 10.1007/s003390050723. | |
dc.relation | J. Jeong, J. H. Kim, J. H. Shim, N. S. Hwang, and C. Y. Heo, “Bioactive calcium phosphate materials and applications in bone regeneration,” Biomaterials Research, vol. 23, no. 1, pp. 1–11, 2019, doi: 10.1186/s40824-018-0149-3. | |
dc.relation | S. Vargas-Villanueva, D. A. Torres-Ceron, S. Amaya-Roncancio, I. D. Arellano-Ramírez, J. S. Riva, and E. Restrepo-Parra, “Study of the incorporation of S in TiO2/SO42− Coatings produced by PEO process through XPS and DFT,” Applied Surface Science, vol. 599, no. May, 2022, doi: 10.1016/j.apsusc.2022.153811. | |
dc.relation | W. S. W. Harun et al., “A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials,” Ceramics International, vol. 44, no. 2. Elsevier Ltd, pp. 1250–1268, Feb. 01, 2018. doi: 10.1016/j.ceramint.2017.10.162. | |
dc.relation | Z. Q. Yao et al., “Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation,” Acta Biomaterialia, vol. 6, no. 7, pp. 2816–2825, 2010, doi: 10.1016/J.ACTBIO.2009.12.053. | |
dc.relation | M. C. Kuo and S. K. Yen, “The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature,” Materials Science and Engineering C, vol. 20, no. 1–2, pp. 153–160, May 2002, doi: 10.1016/S0928-4931(02)00026-7. | |
dc.relation | J. zhi Chen, Y. long Shi, L. Wang, F. ying Yan, and F. qiang Zhang, “Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation,” Mater Lett, vol. 60, no. 20, pp. 2538–2543, Sep. 2006, doi: 10.1016/J.MATLET.2006.01.035. | |
dc.relation | R. Uribe, A. Uvillús, L. Fernández, O. Bonilla, A. Jara, and G. González, “Electrochemical Deposition of Hydroxyapatite on Stainless Steel Coated with Tantalum/Tantalum Nitride Using Simulated Body Fluid as an Electrolytic Medium,” Coatings, vol. 12, no. 4, Apr. 2022, doi: 10.3390/coatings12040440. | |
dc.relation | JAMIESON JC and OLINGER B, “Pressure-Temperature Studies of Anatase, Brookite Rutile, and Tio2(Ii). a Discussion,” American Mineralogist, vol. 54, no. 9–10, pp. 1477–1481, 1969. | |
dc.relation | S. Tanaka, N. Hirose, and T. Tanaki, “Effect of the Temperature and Concentration of NaOH on the Formation of Porous TiO[sub 2],” Journal of The Electrochemical Society, vol. 152, no. 12, p. C789, 2005, doi: 10.1149/1.2073207. | |
dc.relation | M. A. Bassi, M. A. Lopez, L. Confalone, R. M. Gaudio, L. Lombardo, and D. Lauritano, “Enhanced Reader.pdf,” Nature, vol. 388. pp. 539–547, 2020. | |
dc.relation | L. Y. Cui et al., “Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg-Ca alloys: The influence of porosity,” Journal of Alloys and Compounds, vol. 695, pp. 2464–2476, Feb. 2017, doi: 10.1016/J.JALLCOM.2016.11.146. | |
dc.relation | K. W. Widantha, E. A. Basuki, E. Martides, and B. Prawara, “Effect of hydroxyapatite/alumina composite coatings using HVOF on immersion behavior of NiTi alloys,” Journal of Biomaterials Applications, vol. 36, no. 3, pp. 375–384, Sep. 2021, doi: 10.1177/08853282211022531/ASSET/IMAGES/LARGE/10.1177_08853282211022531-FIG2.JPEG. | |
dc.relation | R. Uribe, A. Uvillús, L. Fernández, O. Bonilla, A. Jara, and G. González, “Electrochemical Deposition of Hydroxyapatite on Stainless Steel Coated with Tantalum/Tantalum Nitride Using Simulated Body Fluid as an Electrolytic Medium,” Coatings 2022, Vol. 12, Page 440, vol. 12, no. 4, p. 440, Mar. 2022, doi: 10.3390/COATINGS12040440. | |
dc.relation | F. Peng, D. Wang, Y. Tian, H. Cao, Y. Qiao, and X. Liu, “Sealing the Pores of PEO Coating with Mg-Al Layered Double Hydroxide: Enhanced Corrosion Resistance, Cytocompatibility and Drug Delivery Ability,” Scientific Reports, vol. 7, no. 1, p. 8167, Dec. 2017, doi: 10.1038/s41598-017-08238-w. | |
dc.relation | X. Zhang, Y. Wu, Y. Lv, Y. Yu, and Z. Dong, “Formation mechanism, corrosion behaviour and biological property of hydroxyapatite/TiO2 coatings fabricated by plasma electrolytic oxidation,” Surface and Coatings Technology, vol. 386, no. January, p. 125483, 2020, doi: 10.1016/j.surfcoat.2020.125483. | |
dc.relation | H. Wang, J. K. Lee, A. Moursi, and J. J. Lannutti, “Ca/P ratio effects on the degradation of hydroxyapatite in vitro,” Journal of Biomedical Materials Research - Part A, vol. 67, no. 2, pp. 599–608, 2003, doi: 10.1002/jbm.a.10538. | |
dc.relation | S. Amruthaluru, D. V. Pillai, H. Sampathirao, and N. Rameshbabu, “Development of plasma electrolytic oxidation coatings on Ti-42Al-2V-2Nb alloy,” Mater Today Proc, vol. 46, pp. 1056–1060, 2021, doi: 10.1016/j.matpr.2021.01.420. | |
dc.relation | P. Molaeipour, S. R. Allahkaram, and S. Akbarzadeh, “Corrosion inhibition of Ti6Al4V alloy by a protective plasma electrolytic oxidation coating modified with boron carbide nanoparticles,” Surface and Coatings Technology, vol. 430, no. July 2021, p. 127987, 2022, doi: 10.1016/j.surfcoat.2021.127987. | |
dc.relation | S. Ban and S. Maruno, “Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid,” 1998. | |
dc.relation | A. O. Peo et al., “Silicate and Hydroxide Concentration Influencing the Properties,” pp. 1–21, 2022. | |
dc.relation | S. Durdu, Ö. F. Deniz, I. Kutbay, and M. Usta, “Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation,” Journal of Alloys and Compounds, vol. 551, pp. 422–429, 2013, doi: 10.1016/j.jallcom.2012.11.024. | |
dc.relation | Z. Chen, G. Zhang, and F. Bobaru, “The Influence of Passive Film Damage on Pitting Corrosion,” Journal of The Electrochemical Society, vol. 163, no. 2, pp. C19–C24, Nov. 2016, doi: 10.1149/2.0521602JES/XML. | |
dc.relation | Y. Wang, W. Zhang, and Y. Zheng, “Experimental Study on Corrosion Fatigue Performance of High-Strength Steel Wire with Initial Defect for Bridge Cable,” Applied Sciences 2020, Vol. 10, Page 2293, vol. 10, no. 7, p. 2293, Mar. 2020, doi: 10.3390/APP10072293. | |
dc.relation | M. Ashok, S. N. Kalkura, N. M. Sundaram, and D. Arivuoli, “Growth and characterization of hydroxyapatite crystals by hydrothermal method,” J Mater Sci Mater Med, vol. 18, no. 5, pp. 895–898, May 2007, doi: 10.1007/s10856-006-0070-5. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Análisis electroquímico de los recubrimientos de hidroxiapatita ovina crecidos por ruta hidrotermal sobre capas de TiO2 obtenidas por oxidación electrolítica por plasma | |
dc.type | Trabajo de grado - Maestría | |