dc.contributor | Ospina Giraldo, Luis Fernando | |
dc.contributor | Mena Barreto Silva, Fátima Regina | |
dc.contributor | Principios Bioactivos en Plantas Medicinales | |
dc.contributor | Grupo de Investigación en Tecnología de Productos Naturales Tecprona | |
dc.contributor | Diana Patricia Rey [000000034517631X] | |
dc.contributor | Diana Patricia Rey Padilla [0001395740] | |
dc.contributor | Diana Rey [Diana-Rey] | |
dc.contributor | Diana Patricia Rey Padilla [3HljxewAAAAJ&hl=es] | |
dc.creator | Rey Padilla, Diana Patricia | |
dc.date.accessioned | 2023-08-08T14:26:24Z | |
dc.date.accessioned | 2023-08-25T13:56:59Z | |
dc.date.available | 2023-08-08T14:26:24Z | |
dc.date.available | 2023-08-25T13:56:59Z | |
dc.date.created | 2023-08-08T14:26:24Z | |
dc.date.issued | 2023-10-31 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84473 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8427034 | |
dc.description.abstract | Introducción: La diabetes mellitus tipo 2 es una enfermedad de alta prevalencia e
incidencia a nivel mundial, se estima que la población afectada por esta enfermedad siga
en aumento en el transcurso de los próximos años, esta patología se caracteriza por una
hiperglicemia crónica que si no es controlada conlleva a complicaciones cardiovasculares,
neuropáticas, neurológicas, entre otras. Aunque actualmente se cuenta con varios
tratamientos para el control de la glicemia y prevenir la aparición de las complicaciones
asociadas a la misma, se sigue en búsqueda de nuevos tratamientos. Gran parte de la
población mundial acude a la utilización de plantas medicinales para el tratamiento de sus
enfermedades y aunque se ha reportado en la literatura el efecto antidiabético de varias
plantas medicinales, es necesario profundizar en estudios que permitan establecer su
actividad terapéutica, una de las especies en las que se ha evidenciado esta actividad, es
la Passiflora ligularis, sin embargo se desconoce los metabolitos asociados a este efecto
y su mecanismo de acción por ello se plantearon los siguientes objetivos.
Los objetivos planteados fueron: evaluar el efecto antidiabético de un extracto de hojas
de Passiflora ligularis (P. ligularis), identificar los metabolitos responsables de la actividad
antidiabética de dicho extracto y la dilucidar un posible mecanismo de acción de los
metabolitos responsables de dicha actividad antidiabética. (Texto tomado de la fuente) | |
dc.description.abstract | Introduction: Type 2 diabetes mellitus is a disease of high prevalence and incidence
worldwide, it is estimated that the population affected by this disease will continue to
increase in the coming years, this pathology is characterized by chronic hyperglycemia that
if not controlled leads to cardiovascular, neuropathic, neurological complications, among
others. Although there are currently several treatments to control glycemia and prevent the
appearance of complications associated with it, the search for new treatments continues.
A large part of the world population resorts to the use of medicinal plants for the treatment
of their diseases and although the antidiabetic effect of various medicinal plants has been
reported in the literature, it is necessary to deepen studies that allow establishing their
therapeutic activity, one of the species in which this activity has been evidenced, is
Passiflora ligularis, however the metabolites associated with this effect and its mechanism
of action are unknown, therefore the following objectives were set.
The proposed objectives were: evaluate the antidiabetic effect of an extract of Passiflora
ligularis (P. ligularis) leaves, to identify the metabolites responsible for the antidiabetic
activity of said extract and to elucidate a possible mechanism of action of the metabolites
responsible for said antidiabetic activity. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Doctorado en Ciencias Farmacéuticas | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abdelhameed, R. F. A., Ibrahim, A. K., Elfaky, M. A., Habib, E. S., Mahamed, M. I., Mehanna, E. T., Darwish, K. M., Khodeer, D. M., Ahmed, S. A., & Elhady, S. S. (2021). Antioxidant and anti-inflammatory activity of Cynanchum acutum L. isolated flavonoids using experimentally induced type 2 diabetes mellitus: biological and in silico investigation for NF-κB pathway/miR-146a expression modulation. Antioxidants, 10(11), 1713. https://doi.org/10.3390/antiox10111713 | |
dc.relation | Aguilar-Bryan, L., Clement, J. P., Gonzalez, G., Kunjilwar, K., Babenko, A., & Bryan, J. (1998). Toward understanding the assembly and structure of K ATP channels. Physiological Reviews, 78(1), 227–245. https://doi.org/10.1152/physrev.1998.78.1.227 | |
dc.relation | Agyemang, K., Han, L., Liu, E., Zhang, Y., Wang, T., & Gao, X. (2013). Anti-diabetic research: pharmacological effects of its phytochemical constituents. Evidence-Based Complementary and Alternative Medicine, 654643. https://doi.org/10.1155/2013/654643 | |
dc.relation | Alam, Md. M., Meerza, D., & Naseem, I. (2014). Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Life Sciences, 109(1), 8–14. https://doi.org/10.1016/j.lfs.2014.06.005 | |
dc.relation | Al-Awar, A., Kupai, K., Veszelka, M., Szucs, G., Attieh, Z., Murlasits, Z., Török, S., Pósa, A., & Varga, C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research, 2016. https://doi.org/10.1155/2016/9051426 | |
dc.relation | Algariri, K., Meng, K. Y., Atangwho, I. J., Asmawi, M. Z., Sadikun, A., Murugaiyah, V., & Ismail, N. (2013). Hypoglycemic and anti-hyperglycemic study of Gynura procumbens leaf extracts. Asian Pacific Journal of Tropical Biomedicine, 3(5), 358–366. https://doi.org/10.1016/S2221-1691(13)60077-5 | |
dc.relation | Algoblan, A., Alalfi, M., & Khan, M. (2014). Mechanism linking diabetes mellitus and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 587. https://doi.org/10.2147/DMSO.S67400 | |
dc.relation | AL-Ishaq, Abotaleb, Kubatka, Kajo, & Büsselberg. (2019). Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 9(9), 430. https://doi.org/10.3390/biom9090430 | |
dc.relation | Alkhalidy, H., Moore, W., Wang, A., Luo, J., McMillan, R. P., Wang, Y., Zhen, W., Hulver, M. W., & Liu, D. (2018). Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. The Journal of Nutritional Biochemistry, 58, 90–101. https://doi.org/10.1016/j.jnutbio.2018.04.014 | |
dc.relation | Altunkaynak, B. Z., & Ozbek, E. (2009). Overweight and structural alterations of the liver in female rats fed a high-fat diet: a stereological and histological study. The Turkish Journal of Gastroenterology : The Official Journal of Turkish Society of Gastroenterology, 20(2), 93–103. | |
dc.relation | American Diabetes Association. (2022). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2022. Diabetes Care, 45(Supplement_1), S17–S38. https://doi.org/10.2337/dc22-S002 | |
dc.relation | American Diabetes Association (ADA). (2017). Lifestyle management. Diabetes Care, 40(Supplement_1), S33–S43. https://doi.org/10.2337/dc17-S007 | |
dc.relation | American Diabetes Association (ADA). (2021a). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S15–S33. https://doi.org/10.2337/dc21-S002 | |
dc.relation | American Diabetes Association (ADA). (2021b). Introduction: standards of medical care in diabetes—2021. Diabetes Care, 44(Supplement 1), S1–S2. https://doi.org/10.2337/dc21-Sint | |
dc.relation | Amir Siddiqui, M., Badruddeen, Akhtar, J., Uddin, S., Chandrashekharan, S. M., Ahmad, M., Khan, M. I., & Khalid, M. (2022). Chrysin modulates protein kinase IKKε/TBK1, insulin sensitivity and hepatic fatty infiltration in diet‐induced obese mice. Drug Development Research, 83(1), 194–207. https://doi.org/10.1002/ddr.21859 | |
dc.relation | Andrade-Cetto, A., & Heinrich, M. (2005). Mexican plants with hypoglycaemic effect used in the treatment of diabetes. Journal of Ethnopharmacology, 99(3), 325–348. https://doi.org/10.1016/j.jep.2005.04.019 | |
dc.relation | Andrikopoulos, S., Blair, A. R., Deluca, N., Fam, B. C., & Proietto, J. (2008). Evaluating the glucose tolerance test in mice. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1323–E1332. https://doi.org/10.1152/ajpendo.90617.2008 | |
dc.relation | Antunes, L. C., Elkfury, J. L., Jornada, M. N., Foletto, K. C., & Bertoluci, M. C. (2016). Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats. Archives of Endocrinology and Metabolism, 60(2), 138–142. https://doi.org/10.1590/2359-3997000000169 | |
dc.relation | Anurag, P., & Anuradha, C. V. (2002). Metformin improves lipid metabolism and attenuates lipid peroxidation in high fructose-fed rats. Diabetes, Obesity and Metabolism, 4(1), 36–42. https://doi.org/10.1046/j.1463-1326.2002.00178.x | |
dc.relation | Anusooriya, P., Malarvizhi, D., Gopalakrishnan, V. K., & Devaki, K. (2014). antioxidant and antidiabetic effect of aqueous fruit extract of Passiflora ligularis Juss. on streptozotocin induced diabetic rats. International Scholarly Research Notices, 2014, 1–10. https://doi.org/10.1155/2014/130342 | |
dc.relation | Aragón Novoa, D. M., Ospina Giraldo, L. F., Ramos Rodríguez, F. A., Castellanos Hernández, L., Costa Modesti, G., & Barreto Silva, F. R. M. (2021). Passiflora ligularis Juss. (granadilla): farmacológicos de una estudios químicos y planta con potencial terapéutico (D. M. Aragón Novoa, Ed.; First). Universidad Nacional de Colombia - Sede Bogotá. | |
dc.relation | Araújo Galdino, O., de Souza Gomes, I., Ferreira de Almeida Júnior, R., Conceição Ferreira de Carvalho, M. I., Abreu, B. J., Abbott Galvão Ururahy, M., Cabral, B., Zucolotto Langassner, S. M., Costa de Souza, K. S., & Augusto de Rezende, A. (2022). The nephroprotective action of Passiflora edulis in streptozotocin-induced diabetes. Scientific Reports, 12(1), 17546. https://doi.org/10.1038/s41598-022-21826-9 | |
dc.relation | Arkhammar, P., Juntti-Berggren, L., Larsson, O., Welsh, M., Nanberg, E., Sjoholm, A., Kohler, M., & Berggren, P. O. (1994). Protein kinase C modulates the insulin secretory process by maintaining a proper function of the β-cell voltage-activated Ca2+channels. Journal of Biological Chemistry, 269(4), 2743–2749. | |
dc.relation | Aschner, P., Mauricio Muñoz, O., Giron, D., Garcia, O. M., Fernandez Ávila, D. G., Casas, L. A., Bohórquez, L. F., Arángo T., C. M., Carvajal, L., Ramírez, D. A., Sarmiento, J. G., Colon, C. A., Correa G., N. F., Alarcón R., P., & Bústamante S., A. A. (2016). Clinical practice guideline for the prevention, early detection, diagnosis, management and follow up of type 2 diabetes mellitus in adults. Colombia Medica, 109–130. https://doi.org/10.25100/cm.v47i2.2207 | |
dc.relation | Ashcroft, F. M., Proks, P., Smith, P. A., Ämmälä, C., Bokvist, K., & Rorsman, P. (1994). Stimulus-secretion coupling in pancreatic β cells. Journal of Cellular Biochemistry, 55(S1994A), 54–65. https://doi.org/10.1002/jcb.240550007 | |
dc.relation | Ashcroft, F. M., & Rorsman, P. (2013). K(ATP) channels and islet hormone secretion: new insights and controversies. Nature Reviews Endocrinology, 9(11), 660–669. https://doi.org/10.1038/nrendo.2013.166 | |
dc.relation | Bailey, C. J. (2017). Metformin: historical overview. Diabetologia, 60(9), 1566–1576. https://doi.org/10.1007/s00125-017-4318-z | |
dc.relation | Balibrea, J., & Arias-Díaz, J. (2007). Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Diabetes, 22(2), 160–168. | |
dc.relation | Barber, E., Houghton, M. J., & Williamson, G. (2021). Flavonoids as human intestinal α-glucosidase inhibitors. Foods, 10(8), 1939. https://doi.org/10.3390/foods10081939 | |
dc.relation | Bardy, G., Virsolvy, A., Quignard, J. F., Ravier, M. A., Bertrand, G., Dalle, S., Cros, G., Magous, R., Richard, S., & Oiry, C. (2013). Quercetin induces insulin secretion by direct activation of L-type calcium channels in pancreatic beta cells. British Journal of Pharmacology, 169(5), 1102–1113. https://doi.org/10.1111/bph.12194 | |
dc.relation | Barge, S., Deka, B., Kashyap, B., Bharadwaj, S., Kandimalla, R., Ghosh, A., Dutta, P. P., Samanta, S. K., Manna, P., Borah, J. C., & Talukdar, N. C. (2021). Astragalin mediates the pharmacological effects of Lysimachia candida Lindl on adipogenesis via downregulating PPARG and FKBP51 signaling cascade. Phytotherapy Research, 35(12), 6990–7003. https://doi.org/10.1002/ptr.7320 | |
dc.relation | Barnes, A. S. (2011). The epidemic of obesity and diabetes: trends and treatments. Texas Heart Institute Journal, 38(2), 142–144. | |
dc.relation | Batra, S., & Sjögren, C. (1983). Effect of estrogen treatment of calcium uptake by the rat uterine smooth muscle. Life Sciences, 32(4), 315–319. | |
dc.relation | Belfiore, A., Malaguarnera, R., Vella, V., Lawrence, M. C., Sciacca, L., Frasca, F., Morrione, A., & Vigneri, R. (2017). Insulin receptor isoforms in physiology and disease: an updated view. Endocrine Reviews, 38(5), 379–431. https://doi.org/10.1210/er.2017-00073 | |
dc.relation | Benes, C., Poitout, V., Marie, J.-C., Matin-Perez, J., Roisin, M.-P., & Fagard, R. (1999). Mode of regulation of the extracellular signal-regulated kinases in the pancreatic β-cell line MIN6 and their implication in the regulation of insulin gene transcription. Biochemical Journal, 340(1), 219–225. https://doi.org/10.1042/bj3400219 | |
dc.relation | Bensaude, O. (2011). Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? Transcription, 2(3), 103–108. https://doi.org/10.4161/trns.2.3.16172 | |
dc.relation | Berger, C., & Zdzieblo, D. (2020). Glucose transporters in pancreatic islets. Pflügers Archiv - European Journal of Physiology, 472(9), 1249–1272. https://doi.org/10.1007/s00424-020-02383- | |
dc.relation | Berridge, M. J., Bootman, M. D., & Roderick, H. L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nature Reviews Molecular Cell Biology, 4(7), 517–529. https://doi.org/10.1038/nrm1155 | |
dc.relation | Blackman, S. M., Cooke, D. W., & Hopkins, J. (2013). Diabetes. 1, 649–658. https://doi.org/10.1016/B978-0-12-378630-2.00035-9 | |
dc.relation | Bonfanti, D. H., Alcazar, L. P., Arakaki, P. A., Martins, L. T., Agustini, B. C., de Moraes Rego, F. G., & Frigeri, H. R. (2015). ATP-dependent potassium channels and type 2 diabetes mellitus. Clinical Biochemistry, 48(7–8), 476–482. https://doi.org/10.1016/j.clinbiochem.2014.12.026 | |
dc.relation | Bösenberg, L. H., & van Zyl, D. G. (2008). The mechanism of action of oral antidiabetic drugs: A review of recent literature. Journal of Endocrinology, Metabolism and Diabetes of South Africa, 13(3), 80–88. https://doi.org/10.1080/22201009.2008.10872177 | |
dc.relation | Brahmachari, G. (2011). Bio-flavonoids with promising anti- diabetic potentials: A critical survey. Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry - Research Signpost, 661(2), 187–212. | |
dc.relation | Brereton, M. F., Iberl, M., Shimomura, K., Zhang, Q., Adriaenssens, A. E., Proks, P., Spiliotis, I. I., Dace, W., Mattis, K. K., Ramracheya, R., Gribble, F. M., Reimann, F., Clark, A., Rorsman, P., & Ashcroft, F. M. (2014). Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 5(1), 4639. https://doi.org/10.1038/ncomms5639 | |
dc.relation | Calisti, L., & Tognetti, S. (2005). Measure of glycosylated hemoglobin. Acta Bio-Medica : Atenei Parmensis, 76 Suppl 3, 59–62. | |
dc.relation | Carvajal de Pabón, L. M., Turbay, S., Rojano, B., Álvarez, L. M., Restrepo, S. L., Álvarez, J. M., Bonilla, K. C., Clara Ochoa, O., & Sánchez, N. (2011). Algunas especies de Passiflora y su capacidad antioxidante. Revista Cubana de Plantas Medicinales, 16(4), 354–363. | |
dc.relation | Castro, A. J. G., Frederico, M. J. S., Cazarolli, L. H., Mendes, C. P., Bretanha, L. C., Schmidt, É. C., Bouzon, Z. L., de Medeiros Pinto, V. A., da Fonte Ramos, C., Pizzolatti, M. G., & Silva, F. R. M. B. (2015). The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochimica et Biophysica Acta (BBA) - General Subjects, 1850(1), 51–61. https://doi.org/10.1016/j.bbagen.2014.10.001 | |
dc.relation | Castro Gomes, A. J., Cazarolli, L. H., Bretanha, L. C., Sulis, P. M., Rey Padilla, D. P., Aragón Novoa, D. M., Dambrós, B. F., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2018). The potent insulin secretagogue effect of betulinic acid is mediated by potassium and chloride channels. Archives of Biochemistry and Biophysics, 648(April), 20–26. https://doi.org/10.1016/j.abb.2018.04.015 | |
dc.relation | Catterall, W. A. (2011). Voltage-Gated Calcium Channels. Cold Spring Harbor Perspectives in Biology, 3(8), a003947–a003947. https://doi.org/10.1101/cshperspect.a003947 | |
dc.relation | Cazarolli, L. H., Folador, P., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2009). Mechanism of action of the stimulatory effect of apigenin-6-C-(2″-O-α-l-rhamnopyranosyl)-β-l-fucopyranoside on 14C-glucose uptake. Chemico-Biological Interactions, 179(2–3), 407–412. https://doi.org/10.1016/j.cbi.2008.11.012 | |
dc.relation | Cazarolli, L. H., Folador, P., Pizzolatti, M. G., & Mena Barreto Silva, F. R. (2009a). Signaling pathways of kaempferol-3-neohesperidoside in glycogen synthesis in rat soleus muscle. Biochimie, 91(7), 843–849. https://doi.org/10.1016/j.biochi.2009.04.004 | |
dc.relation | Cazarolli, L. H., Kappel, V. D., Pereira, D. F., Moresco, H. H., Brighente, I. M. C., Pizzolatti, M. G., & Silva, F. R. M. B. (2012). Anti-hyperglycemic action of apigenin-6-C-β-fucopyranoside from Averrhoa carambola. Fitoterapia, 83(7), 1176–1183. https://doi.org/10.1016/j.fitote.2012.07.003 | |
dc.relation | Cazarolli, L. H., Pereira, D. F., Kappel, V. D., Folador, P., Figueiredo, M. D. S. R. B., Pizzolatti, M. G., & Silva, F. R. M. B. (2013). Insulin signaling: A potential signaling pathway for the stimulatory effect of kaempferitrin on glucose uptake in skeletal muscle. European Journal of Pharmacology, 712(1–3), 1–7. https://doi.org/10.1016/j.ejphar.2013.02.029 | |
dc.relation | Cazarolli, L. H., Zanatta, L., Jorge, A. P., de Sousa, E., Horst, H., Woehl, V. M., Pizzolatti, M. G., Szpoganicz, B., & Silva, F. R. M. B. (2006). Follow-up studies on glycosylated flavonoids and their complexes with vanadium: Their anti-hyperglycemic potential role in diabetes. Chemico-Biological Interactions, 163(3), 177–191. https://doi.org/10.1016/j.cbi.2006.07.010 | |
dc.relation | Cazarolli, L., Zanatta, L., Alberton, E., Reis Bonorino Figueiredo, M., Folador, P., Damazio, R., Pizzolatti, M., & Mena Barreto Silva, F. (2008). Flavonoids: Cellular and molecular mechanism of action in glucose homeostasis. Mini-Reviews in Medicinal Chemistry, 8(10), 1032–1038. https://doi.org/10.2174/138955708785740580 | |
dc.relation | Chang, Y.-C., & Chuang, L.-M. (2010). The role of oxidative stress in the pathogenesis of type 2 diabetes: from molecular mechanism to clinical implication. American Journal of Translational Research, 2(3), 316–331. | |
dc.relation | Chen, S., Chen, J., Li, S., Guo, F., Li, A., Wu, H., Chen, J., Pan, Q., Liao, S., Liu, H., & Pan, Q. (2021). High-fat diet-induced renal proximal tubular inflammatory injury: emerging risk factor of chronic kidney disease. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.786599 | |
dc.relation | Chippy, J., Lincy, J., & Mathew, G. (2016). Evaluation of anti-diabetic activity of leaves of Passiflora ligularis on alloxan induced diabetes mellitus in albino rats. International Journal of Pharmacy and Pharmaceutical Research, 6(4), 518–522. | |
dc.relation | Choi, B. H., & Hahn, S. J. (2010). Kv1.3: a potential pharmacological target for diabetes. Acta Pharmacologica Sinica, 31(9), 1031–1035. https://doi.org/10.1038/aps.2010.133 | |
dc.relation | Choi, J., Kang, H. J., Kim, S. Z., Kwon, T. O., Jeong, S. Il, & Jang, S. Il. (2013). Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Archives of Pharmacal Research, 36(7), 912–917. https://doi.org/10.1007/s12272-013-0090-x | |
dc.relation | Choi, S. B., Park, C. H., Choi, M. K., Jun, D. W., & Park, S. (2004). Improvement of insulin resistance and insulin secretion by water extracts of Cordyceps militaris, Phellinus linteus, and Paecilomyces tenuipes in 90% pancreatectomized rats. Bioscience, Biotechnology, and Biochemistry, 68(11), 2257–2264. https://doi.org/10.1271/bbb.68.2257 | |
dc.relation | Coman, C., Rugina, O. D., & Socaciu, C. (2012). Plants and natural compounds with antidiabetic action. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 314. https://doi.org/10.15835/nbha4017205 | |
dc.relation | Costa, G. M., Gazola, A. C., Zucolotto, S. M., Castellanos, L., Ramos, F. A., Reginatto, F. H., & Schenkel, E. P. (2016). Chemical profiles of traditional preparations of four south american Passiflora species by chromatographic and capillary electrophoretic techniques. Revista Brasileira de Farmacognosia, 26(4), 451–458. https://doi.org/10.1016/j.bjp.2016.02.005 | |
dc.relation | Da Silva Xavier, G. (2018). The cells of the islets of langerhans. Journal of Clinical Medicine, 7(3), 54. https://doi.org/10.3390/jcm7030054 | |
dc.relation | Dabla, P. K. (2010). Renal function in diabetic nephropathy. World Journal of Diabetes, 1(2), 48. https://doi.org/10.4239/wjd.v1.i2.48 | |
dc.relation | Dash, S., Pattnaik, G., Kar, B., Sahoo, N., & Bhattacharya, S. (2021). An approach towards method development to investigate the anti-diabetic activity on experimental animals. Current Trends in Biotechnology and Pharmacy, 15(3), 330–348. https://doi.org/10.5530/ctbp.2021.3.34 | |
dc.relation | de Almeida, V. L., Silva, C. G., & Campana, P. R. V. (2021). Flavonoids of Passiflora: isolation, structure elucidation, and biotechnological application (pp. 263–310). https://doi.org/10.1016/B978-0-323-91095-8.00004-0 | |
dc.relation | Dejager, S., Penfornis, A., Blickle, J.-F., Fiquet, B., & Quere, S. (2014). How are patients with type 2 diabetes and renal disease monitored and managed? Insights from the observational OREDIA study. Vascular Health and Risk Management, 341. https://doi.org/10.2147/VHRM.S60312 | |
dc.relation | Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: a review update. Journal of Ethnopharmacology, 94(1), 1–23. https://doi.org/10.1016/j.jep.2004.02.023 | |
dc.relation | Di Magno, L., Di Pastena, F., Bordone, R., Coni, S., & Canettieri, G. (2022). The mechanism of action of biguanides: new answers to a complex question. Cancers, 14(13), 3220. https://doi.org/10.3390/cancers14133220 | |
dc.relation | Díaz Horta, O. (2003). El ion calcio: su regulación y función en la célula ß pancreática. Revista Cubana de Endocrinología, 14(3), 0–0. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-29532003000300008&lng=es&nrm=iso&tlng=es | |
dc.relation | Doi, K., Yamanouchi, J., Kume, E., & Yasoshima, A. (1997). Morphologic changes in hepatocyte nuclei of streptozotocin (SZ)-induced diabetic mice. Experimental and Toxicologic Pathology, 49(3–4), 295–299. https://doi.org/10.1016/S0940-2993(97)80041-3 | |
dc.relation | Dowarah, J., & Singh, V. P. (2020). Anti-diabetic drugs recent approaches and advancements. Bioorganic & Medicinal Chemistry, 28(5), 115263. https://doi.org/10.1016/j.bmc.2019.115263 | |
dc.relation | Drozdowski, L., & Thomson, A. (2006). Intestinal sugar transport. World Journal of Gastroenterology, 12(11), 1657. https://doi.org/10.3748/wjg.v12.i11.1657 | |
dc.relation | Du, Y., & Wei, T. (2014). Inputs and outputs of insulin receptor. Protein & Cell, 5(3), 203–213. https://doi.org/10.1007/s13238-014-0030-7 | |
dc.relation | Duan, Y., Dai, H., An, Y., Cheng, L., Shi, L., Lv, Y., Li, H., Wang, C., He, C., Zhang, H., Huang, Y., Fu, W., Meng, Y., & Zhao, B. (2022). Mulberry leaf flavonoids inhibit liver inflammation in type 2 diabetes rats by regulating TLR4/MyD88/NF-κB signaling pathway. Evidence-Based Complementary and Alternative Medicine, 2022, 1–10. https://doi.org/10.1155/2022/3354062 | |
dc.relation | Duarte, I. de A. E., Milenkovic, D., Borges, T. K. dos S., Rosa, A. J. de M., Morand, C., Oliveira, L. de L. de, & Costa, A. M. (2020). Acute effects of the consumption of Passiflora setacea juice on metabolic risk factors and gene expression profile in humans. Nutrients, 12(4), 1104. https://doi.org/10.3390/nu12041104 | |
dc.relation | Echeverry, S. M., Rey, D., Valderrama, I. H., Araujo, B. V. de, & Aragón, D. M. (2021). Development of a self-emulsifying drug delivery system (SEDDS) to improve the hypoglycemic activity of Passiflora ligularis leaves extract. In Journal of Drug Delivery Science and Technology (Vol. 64). https://doi.org/10.1016/j.jddst.2021.102604 | |
dc.relation | Echeverry, S. M., Valderrama, I. H., Costa, G. M., Ospina-Giraldo, L. F., & Aragón, D. M. (2018). Development and optimization of microparticles containing a hypoglycemic fraction of calyces from Physalis peruviana. Journal of Applied Pharmaceutical Science, 8(5), 10–18. https://doi.org/10.7324/JAPS.2018.8502 | |
dc.relation | Eid, H. M., Martineau, L. C., Saleem, A., Muhammad, A., Vallerand, D., Benhaddou-Andaloussi, A., Nistor, L., Afshar, A., Arnason, J. T., & Haddad, P. S. (2010). Stimulation of AMP-activated protein kinase and enhancement of basal glucose uptake in muscle cells by quercetin and quercetin glycosides, active principles of the antidiabetic medicinal plant Vaccinium vitis-idaea. Molecular Nutrition and Food Research, 54(7), 991–1003. https://doi.org/10.1002/mnfr.200900218 | |
dc.relation | Eisenreich, A., & Leppert, U. (2017). Update on the protective renal effects of metformin in diabetic nephropathy. Current Medicinal Chemistry, 24(31). https://doi.org/10.2174/0929867324666170404143102 | |
dc.relation | Fallah, Z., Tajbakhsh, M., Alikhani, M., Larijani, B., Faramarzi, M. A., Hamedifar, H., Mohammadi-Khanaposhtani, M., & Mahdavi, M. (2022). A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents. Journal of Molecular Structure, 1255, 132469. https://doi.org/10.1016/j.molstruc.2022.132469 | |
dc.relation | Fang, P., Yu, M., Min, W., Wan, D., Han, S., Shan, Y., Wang, R., Shi, M., Zhang, Z., & Bo, P. (2018). Effect of baicalin on GLUT4 expression and glucose uptake in myotubes of rats. Life Sciences, 196, 156–161. https://doi.org/10.1016/j.lfs.2018.01.022 | |
dc.relation | Farzaei, F., Morovati, M. R., Farjadmand, F., & Farzaei, M. H. (2017). A mechanistic review on medicinal plants used for diabetes mellitus in traditional persian medicine. Journal of Evidence-Based Complementary and Alternative Medicine, 22(4), 944–955. https://doi.org/10.1177/2156587216686461 | |
dc.relation | Fazakerley, D. J., Krycer, J. R., Kearney, A. L., Hocking, S. L., & James, D. E. (2019). Muscle and adipose tissue insulin resistance: malady without mechanism?. Journal of Lipid Research, 60(10), 1720–1732. https://doi.org/10.1194/jlr.R087510 | |
dc.relation | Floch, J.-P. le, Escuyer, P., Baudin, E., Baudon, D., & Perlemuter, L. (1990). Blood glucose area under the curve: methodological aspects. Diabetes Care, 13(2), 172–175. https://doi.org/10.2337/diacare.13.2.172 | |
dc.relation | Folador, P., Cazarolli, L. H., Gazola, A. C., Reginatto, F. H., Schenkel, E. P., & Silva, F. R. M. B. (2010). Potential insulin secretagogue effects of isovitexin and swertisin isolated from Wilbrandia ebracteata roots in non-diabetic rats. Fitoterapia, 81(8), 1180–1187. https://doi.org/10.1016/j.fitote.2010.07.022 | |
dc.relation | Frederico, M. J. S., Castro, A. J. G., Mascarello, A., Mendes, C. P., Kappel, V. D., Stumpf, T. R., Leal, P. C., Nunes, R. J., Yunes, R. A., & Silva, F. R. M. B. (2012). Acylhydrazones contribute to serum glucose homeostasis through dual physiological targets. Current Topics in Medicinal Chemistry, 12(19), 2049–2058. https://dx.doi.org/10.2174/1568026611212190003 | |
dc.relation | Frederico, M., Gomes Castro, A., Menegaz, D., de Bernardis Murat, C., Pires Mendes, C., Mascarello, A., Nunes, R., & Silva, F. R. M. B. (2017). Mechanism of Action of Novel Glibenclamide Derivatives on Potassium and Calcium Channels for Insulin Secretion. Current Drug Targets, 18(6), 641–650. https://doi.org/10.2174/1389450117666160615084752 | |
dc.relation | Frederico, M. J. S., Castro, A. J. G., Pinto, V. A. M., Ramos, C. D. F., Monteiro, F. B. F., Mascarello, A., Nunes, R. J., & Silva, F. R. M. B. (2018). Mechanism of action of camphoryl-benzene sulfonamide derivative on glucose uptake in adipose tissue. Journal of Cellular Biochemistry, 119(6), 4408–4419. https://doi.org/10.1002/jcb.26506 | |
dc.relation | Friedrichsen, M., Mortensen, B., Pehmøller, C., Birk, J. B., & Wojtaszewski, J. F. P. (2013). Exercise-induced AMPK activity in skeletal muscle: Role in glucose uptake and insulin sensitivity. In Molecular and Cellular Endocrinology (Vol. 366, Issue 2, pp. 204–214). Elsevier Ireland Ltd. https://doi.org/10.1016/j.mce.2012.06.013 | |
dc.relation | Fröde, T. S., & Medeiros, Y. S. (2008). Animal models to test drugs with potential antidiabetic activity. Journal of Ethnopharmacology, 115(2), 173–183. https://doi.org/10.1016/j.jep.2007.10.038 | |
dc.relation | Furman, B. L. (2015). Streptozotocin-induced diabetic models in mice and rats. In Current Protocols in Pharmacology (pp. 5.47.1-5.47.20). John Wiley & Sons, Inc. https://doi.org/10.1002/0471141755.ph0547s70 | |
dc.relation | George, P., & McCrimmon, R. (2012). Diazoxide. Practical Diabetes, 29(1), 36–37. | |
dc.relation | Ghasemi, A., Khalifi, S., & Jedi, S. (2014). Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiologica Hungarica, 101(4), 408–420. https://doi.org/10.1556/APhysiol.101.2014.4.2 | |
dc.relation | Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation Research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545 | |
dc.relation | Gilbert, E. R., Fu, Z., & Liu, D. (2011). Development of a nongenetic mouse model of type 2 diabetes. Experimental Diabetes Research, 2011, 1–12. https://doi.org/10.1155/2011/416254 | |
dc.relation | Gilon, P., Chae, H.-Y., Rutter, G. A., & Ravier, M. A. (2014). Calcium signaling in pancreatic β-cells in health and in type 2 diabetes. Cell Calcium, 56(5), 340–361. https://doi.org/10.1016/j.ceca.2014.09.001 | |
dc.relation | Ginsberg, H. N., Zhang, Y.-L., & Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36(3), 232–240. https://doi.org/10.1016/j.arcmed.2005.01.005 | |
dc.relation | Goldberg, I. J. (2001). Diabetic dyslipidemia: Causes and consequences. The Journal of Clinical Endocrinology & Metabolism, 86(3), 965–971. https://doi.org/10.1210/jcem.86.3.7304 | |
dc.relation | Gomes Castro, A. J., Silva Frederico, M. J., Cazarolli, L. H., Bretanha, L. C., Tavares, L. de C., Buss, Z. da S., Dutra, M. F., Pacheco de Souza, A. Z., Pizzolatti, M. G., & Silva, F. R. M. B. (2014). Betulinic acid and 1,25(OH)2 vitamin D3 share intracellular signal transduction in glucose homeostasis in soleus muscle. The International Journal of Biochemistry & Cell Biology, 48, 18–27. https://doi.org/10.1016/j.biocel.2013.11.020 | |
dc.relation | Gorovits, N., & Charron, M. J. (2003). What we know about facilitative glucose transporters. Biochemistry and Molecular Biology Education, 31(3), 163–172. | |
dc.relation | Goss, M. J., Nunes, M. L. O., Machado, I. D., Merlin, L., Macedo, N. B., Silva, A. M. O., Bresolin, T. M. B., & Santin, J. R. (2018). Peel flour of Passiflora edulis Var. Flavicarpa supplementation prevents the insulin resistance and hepatic steatosis induced by low-fructose-diet in young rats. Biomedicine & Pharmacotherapy, 102, 848–854. https://doi.org/10.1016/j.biopha.2018.03.137 | |
dc.relation | Gulliford, M. C., Charlton, J., & Latinovic, R. (2006). Risk of diabetes associated with prescribed glucocorticoids in a large population. Diabetes Care, 29(12), 2728–2729. https://doi.org/10.2337/dc06-1499 | |
dc.relation | Guo, X., Wang, Y., Wang, K., Ji, B., & Zhou, F. (2018). Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection. Journal of Zhejiang University-SCIENCE B, 19(7), 559–569. https://doi.org/10.1631/jzus.B1700254 | |
dc.relation | Gupta, J., Gupta, A., & Kumar, A. (2018). Role of dietary flavonoids having antidiabetic properties and their protective mechanism. IJCRCPS, 5(1), 13–21. https://doi.org/10.22192/ijcrcps.2018.05.01.004 | |
dc.relation | Gupta, R. K., Kumar, D., Chaudhary, A. K., Maithani, M., & Singh, R. (2012). Antidiabetic activity of Passiflora incarnata Linn. in streptozotocin-induced diabetes in mice. Journal of Ethnopharmacology, 139(3), 801–806. https://doi.org/10.1016/j.jep.2011.12.021 | |
dc.relation | Gustavsson, J., Parpal, S., Karlsson, M., Ramsing, C., Thorn, H., Borg, M., Lindroth, M., Peterson, K. H., Magnusson, K. E., & Strâlfors, P. (1999). Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 13(14), 1961–1971. http://www.ncbi.nlm.nih.gov/pubmed/10544179 | |
dc.relation | Hagenacker, T., Hillebrand, I., Büsselberg, D., & Schäfers, M. (2010). Myricetin reduces voltage activated potassium channel currents in DRG neurons by a p38 dependent mechanism. Brain Research Bulletin, 83(5), 292–296. https://doi.org/10.1016/j.brainresbull.2010.07.010 | |
dc.relation | Haligur, M., Topsakal, S., & Ozmen, O. (2012). Early Degenerative effects of diabetes mellitus on pancreas, liver, and kidney in rats: An immunohistochemical study. Experimental Diabetes Research, 2012, 1–10. https://doi.org/10.1155/2012/120645 | |
dc.relation | Han, Y., Tang, S., Liu, Y., Li, A., Zhan, M., Yang, M., Song, N., Zhang, W., Wu, X., Peng, C., Zhang, H., & Yang, S. (2021). AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice. Cell Death & Disease, 12(10), 925. https://doi.org/10.1038/s41419-021-04184-8 | |
dc.relation | Hassan, Z., Yam, M. F., Ahmad, M., & Yusof, A. P. M. (2010). Antidiabetic properties and mechanism of action of Gynura procumbens water extract in streptozotocin-induced diabetic rats. Molecules, 15(12), 9008–9023. https://doi.org/10.3390/molecules15129008 | |
dc.relation | Hawley, J. A., Hargreaves, M., & Zierath, J. R. (2006). Signalling mechanisms in skeletal muscle: Role in substrate selection and muscle adaptation. Essays in Biochemistry, 42, 1–12. https://doi.org/10.1042/bse0420001 | |
dc.relation | Henquin, J.-C. (2011). The dual control of insulin secretion by glucose involves triggering and amplifying pathways in β-cells. Diabetes Research and Clinical Practice, 93, S27–S31. https://doi.org/10.1016/S0168-8227(11)70010-9 | |
dc.relation | Hiriart, M., & Aguilar-Bryan, L. (2008). Channel regulation of glucose sensing in the pancreatic β-cell. American Journal of Physiology-Endocrinology and Metabolism, 295(6), E1298–E1306. https://doi.org/10.1152/ajpendo.90493.2008. | |
dc.relation | Ho, G. T. T., Kase, E. T., Wangensteen, H., & Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65(13), 2677–2685. https://doi.org/10.1021/acs.jafc.6b05582 | |
dc.relation | Hong, H. C., Li, S. L., Zhang, X. Q., Ye, W. C., & Zhang, Q. W. (2013). Flavonoids with α-glucosidase inhibitory activities and their contents in the leaves of Morus atropurpurea. Chinese Medicine (United Kingdom), 8(1), 1. https://doi.org/10.1186/1749-8546-8-19 | |
dc.relation | Hsia, D. S., Grove, O., & Cefalu, W. T. (2016). An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Current Opinion in Endocrinology & Diabetes and Obesity, 1. https://doi.org/10.1097/MED.0000000000000311 | |
dc.relation | Huang, G., Tang, B., Tang, K., Dong, X., Deng, J., Liao, L., Liao, Z., Yang, H., & He, S. (2014). Isoquercitrin inhibits the progression of liver cancer in vivo and in vitro via the MAPK signalling pathway. Oncology Reports, 31(5), 2377–2384. https://doi.org/10.3892/or.2014.3099 | |
dc.relation | Huang, J., Imamura, T., Babendure, J. L., Lu, J.-C., & Olefsky, J. M. (2005). Disruption of microtubules ablates the specificity of insulin signaling to GLUT4 translocation in 3T3-L1 adipocytes. Journal of Biological Chemistry, 280(51), 42300–42306. https://doi.org/10.1074/jbc.M510920200 | |
dc.relation | Huang, X.-L., He, Y., Ji, L.-L., Wang, K.-Y., Wang, Y.-L., Chen, D.-F., Geng, Y., OuYang, P., & Lai, W.-M. (2017). Hepatoprotective potential of isoquercitrin against type 2 diabetes-induced hepatic injury in rats. Oncotarget, 8(60). https://doi.org/10.18632/oncotarget.21074 | |
dc.relation | Hughes, E., Lee, A. K., & Tse, A. (2006). Dominant role of sarcoendoplasmic reticulum Ca2+-ATPase pump in Ca2+ homeostasis and exocytosis in rat pancreatic beta-cells. Endocrinology, 147(3), 1396–1407. https://doi.org/10.1210/en.2005-1023 | |
dc.relation | Huopio, H., Shyng, S.-L., Otonkoski, T., & Nichols, C. G. (2002). KATP channels and insulin secretion disorders. American Journal of Physiology-Endocrinology and Metabolism, 283(2), E207–E216. https://doi.org/10.1152/ajpendo.00047.2002 | |
dc.relation | Ibtissem, B. A., Hajer, B. S., Ahmed, H., Awatef, E., Choumous, K., Ons, B., Mounir, Z. K., & Najiba, Z. (2017). Oxidative stress and histopathological changes induced by methylthiophanate, a systemic fungicide, in blood, liver and kidney of adult rats. African Health Sciences, 17(1), 154. https://doi.org/10.4314/ahs.v17i1.20 | |
dc.relation | Janssen, B. J. A., De Celle, T., Debets, J. J. M., Brouns, A. E., Callahan, M. F., & Smith, T. L. (2004). Effects of anesthetics on systemic hemodynamics in mice. American Journal of Physiology-Heart and Circulatory Physiology, 287(4), H1618–H1624. https://doi.org/10.1152/ajpheart.01192.2003 | |
dc.relation | Jayachandran, M., Zhang, T., Ganesan, K., Xu, B., & Chung, S. S. M. (2018). Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 829, 112–120. https://doi.org/10.1016/j.ejphar.2018.04.015 | |
dc.relation | Jing, X., Li, D.-Q., Olofsson, C. S., Salehi, A., Surve, V. v., Caballero, J., Ivarsson, R., Lundquist, I., Pereverzev, A., Schneider, T., Rorsman, P., & Renström, E. (2005). CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 115(1), 146–154. https://doi.org/10.1172/JCI22518 | |
dc.relation | Jitrapakdee, S., Wutthisathapornchai, A., Wallace, J. C., & MacDonald, M. J. (2010). Regulation of insulin secretion: role of mitochondrial signalling. Diabetologia, 53(6), 1019–1032. https://doi.org/10.1007/s00125-010-1685-0 | |
dc.relation | Joseph, J., Anand, K., Malindisa, S. T., Oladipo, A. O., & Fagbohun, O. F. (2021). Exercise, CaMKII, and type 2 diabetes. EXCLI Journal, 20, 386–399. https://doi.org/10.17179/excli2020-3317 | |
dc.relation | Jung, K. Y., Kim, K. M., & Lim, S. (2014). Therapeutic approaches for preserving or restoring pancreatic β-cell function and mass. Diabetes & Metabolism Journal, 38(6), 426. https://doi.org/10.4093/dmj.2014.38.6.426 | |
dc.relation | Kamp, T. J., & Hell, J. W. (2000). Regulation of cardiac L-type calcium channels by protein kinase a and protein kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095 | |
dc.relation | Kandandapani, S., Balaraman, A. K., & Ahamed, H. N. (2015). Extracts of passion fruit peel and seed of Passiflora edulis (Passifloraceae) attenuate oxidative stress in diabetic rats. Chinese Journal of Natural Medicines, 13(9), 680–686. https://doi.org/10.1016/S1875-5364(15)30066-2 | |
dc.relation | Kaneko, Y. K., & Ishikawa, T. (2015). Diacylglycerol signaling pathway in pancreatic β-cells: an essential role of diacylglycerol kinase in the regulation of insulin secretion. Biological & Pharmaceutical Bulletin, 38(5), 669–673. https://doi.org/10.1248/bpb.b15-00060 | |
dc.relation | Kanzaki, M. (2006). Insulin receptor signals regulating GLUT4 translocation and actin dynamics. Endocrine Journal, 53(3), 267–293. https://doi.org/10.1507/endocrj.KR-65 | |
dc.relation | Kappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Madoglio, F. A., Buss, Z. da S., Reginatto, F. H., & B. Silva, F. R. M. (2013). Beneficial effects of banana leaves (Musa x paradisiaca) on glucose homeostasis: Multiple sites of action. Revista Brasileira de Farmacognosia, 23(4), 706–715. https://doi.org/10.1590/S0102-695X2013005000062 | |
dc.relation | Kappel, V. D., Cazarolli, L. H., Pereira, D. F., Postal, B. G., Zamoner, A., Reginatto, F. H., & Silva, F. R. M. B. (2013a). Involvement of GLUT-4 in the stimulatory effect of rutin on glucose uptake in rat soleus muscle. Journal of Pharmacy and Pharmacology, 65(8), 1179–1186. https://doi.org/10.1111/jphp.12066 | |
dc.relation | Kappel, V. D., Frederico, M. J. S., Postal, B. G., Mendes, C. P., Cazarolli, L. H., & Silva, F. R. M. B. (2013b). The role of calcium in intracellular pathways of rutin in rat pancreatic islets: Potential insulin secretagogue effect. European Journal of Pharmacology, 702(1–3), 264–268. https://doi.org/10.1016/j.ejphar.2013.01.055 | |
dc.relation | Kappel, V. D., Pereira, D. F., Cazarolli, L. H., Guesser, S. M., da Silva, C. H. B., Schenkel, E. P., Reginatto, F. H., & Silva, F. R. M. B. (2012). Short and long-term effects of Baccharis articulata on glucose homeostasis. Molecules, 17(6), 6754–6768. https://doi.org/10.3390/molecules17066754 | |
dc.relation | Karam, I., Ma, N., Yang, Y.-J., & Li, J.-Y. (2018). Induce hyperlipidemia in rats using high fat diet investigating blood lipid and histopathology. Journal of Hematology and Blood Disorders, 4(1). https://doi.org/10.15744/2455-7641.4.104 | |
dc.relation | Ke, M., Hu, X. Q., Ouyang, J., Dai, B., & Xu, Y. (2012). The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions. Bio-Medical Materials and Engineering, 22(1–3), 113–119. https://doi.org/10.3233/BME-2012-0696 | |
dc.relation | Khan, M. A. B., Hashim, M. J., King, J. K., Govender, R. D., Mustafa, H., & al Kaabi, J. (2020). Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10(1), 107–111. https://doi.org/10.2991/jegh.k.191028.001 | |
dc.relation | Khlifi, R., Dhaouefi, Z., Toumia, I. Ben, Lahmar, A., Sioud, F., Bouhajeb, R., Bellalah, A., & Chekir-Ghedira, L. (2020). Erica multiflora extract rich in quercetin-3-O-glucoside and kaempferol-3-O-glucoside alleviates high fat and fructose diet-induced fatty liver disease by modulating metabolic and inflammatory pathways in Wistar rats. The Journal of Nutritional Biochemistry, 86, 108490. https://doi.org/10.1016/j.jnutbio.2020.108490 | |
dc.relation | Kim, B., Cho, B., & Jang, S. (2018). Anti-obesity effects of Diospyros lotus leaf extract in mice with high-fat diet-induced obesity. International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2018.3941 | |
dc.relation | Kim, M. S., & Kim, S. H. (2011). Inhibitory effect of astragalin on expression of lipopolysaccharide induced inflammatory mediators through NF-κB in macrophages. Archives of Pharmacal Research, 34(12), 2101–2107. https://doi.org/10.1007/s12272-011-1213-x | |
dc.relation | Kittl, M., Beyreis, M., Tumurkhuu, M., Fürst, J., Helm, K., Pitschmann, A., Gaisberger, M., Glasl, S., Ritter, M., & Jakab, M. (2016). Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cellular Physiology and Biochemistry, 39(1), 278–293. https://doi.org/10.1159/000445623 | |
dc.relation | Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. The FASEB Journal, 32(4), 1741–1777. https://doi.org/10.1096/fj.201700442R | |
dc.relation | Koh, D. S., Cho, J. H., & Chen, L. (2012). Paracrine interactions within islets of Langerhans. Journal of Molecular Neuroscience, 48(2), 429–440. https://doi.org/10.1007/s12031-012-9752-2 | |
dc.relation | Krisman, C. (1962). A method for the colorimetric estimation of glycogen with lodine. Analytical Biochemistry, 4(1), 17–23. | |
dc.relation | Kyriazis, G. A., Smith, K. R., Tyrberg, B., Hussain, T., & Pratley, R. E. (2014). Sweet taste receptors regulate basal insulin secretion and contribute to compensatory insulin hypersecretion during the development of diabetes in male mice. Endocrinology, 155(6), 2112–2121. https://doi.org/10.1210/en.2013-2015 | |
dc.relation | Lacy, P. E., & Kostianovsky, M. D. (1967). Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes, 6(1), 35–39. | |
dc.relation | Lenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia, 51(2), 216–226. https://doi.org/10.1007/s00125-007-0886-7 | |
dc.relation | Li, H., Park, H.-M., Ji, H.-S., Han, J., Kim, S.-K., Park, H.-Y., & Jeong, T.-S. (2020). Phenolic-enriched blueberry-leaf extract attenuates glucose homeostasis, pancreatic β-cell function, and insulin sensitivity in high-fat diet–induced diabetic mice. Nutrition Research, 73, 83–96. https://doi.org/10.1016/j.nutres.2019.09.005 | |
dc.relation | Li, R., Bilik, D., Brown, M. B., Zhang, P., Ettner, S. L., Ackermann, R. T., Crosson, J. C., & Herman, W. H. (2013). Medical costs associated with type 2 diabetes complications and comorbidities. The American Journal of Managed Care, 19(5), 421–430. | |
dc.relation | Li, Y., Wang, P., Xu, J., & Desir, G. V. (2006). Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+ -dependent mechanism. American Journal of Physiology-Cell Physiology, 290(2), C345–C351. https://doi.org/10.1152/ajpcell.00091.2005 | |
dc.relation | Liu, M., Weiss, M. A., Arunagiri, A., Yong, J., Rege, N., Sun, J., Haataja, L., Kaufman, R. J., & Arvan, P. (2018). Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes, Obesity and Metabolism, 20, 28–50. https://doi.org/10.1111/dom.13378 | |
dc.relation | Llanos, P., Contreras-Ferrat, A., Georgiev, T., Osorio-Fuentealba, C., Espinosa, A., Hidalgo, J., Hidalgo, C., & Jaimovich, E. (2015). The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. American Journal of Physiology-Endocrinology and Metabolism, 308(4), E294–E305. https://doi.org/10.1152/ajpendo.00189.2014 | |
dc.relation | Lochner, A., & Moolman, J. A. (2006). The many faces of H89: A review. Cardiovascular Drug Reviews, 24(3–4), 261–274. https://doi.org/10.1111/j.1527-3466.2006.00261.x | |
dc.relation | Lowry, O. H., Rosebrough, N. J., Randall, R. J., & Farr, L. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275. https://doi.org/10.1016/0304-3894(92)87011-4 | |
dc.relation | Luna, B., & Feinglos, M. N. (2001). Oral agents in the management of type 2 diabetes mellitus. American Family Physician, 63(9), 1747–1756. | |
dc.relation | Lytton, J., Westlin, M., & Hanley, M. R. (1991). Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. Journal of Biological Chemistry, 266(26), 17067–17071. | |
dc.relation | Ma, Q., Guo, Y., Sun, L., & Zhuang, Y. (2017). Anti-diabetic effects of phenolic extract from rambutan peels (Nephelium lappaceum) in high-fat diet and streptozotocin-induced diabetic mice. Nutrients, 9(8), 801. https://doi.org/10.3390/nu9080801 | |
dc.relation | Ma, Z., Piao, T., Wang, Y., & Liu, J. (2015). Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. International Immunopharmacology, 25(1), 83–87. https://doi.org/10.1016/j.intimp.2015.01.018 | |
dc.relation | MacDonald, P. E., Joseph, J. W., & Rorsman, P. (2005). Glucose-sensing mechanisms in pancreatic β-cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1464), 2211–2225. https://doi.org/10.1098/rstb.2005.1762 | |
dc.relation | MacDonald, P. E., & Wheeler, M. B. (2003). Voltage-dependent K+ channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets. Diabetologia, 46(8), 1046–1062. https://doi.org/10.1007/s00125-003-1159-8 | |
dc.relation | McCarty, M. F. (2006). PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. Medical Hypotheses, 66(4), 824–831. https://doi.org/10.1016/j.mehy.2004.08.034 | |
dc.relation | McTaggart, J. S., Clark, R. H., & Ashcroft, F. M. (2010). Symposium review: The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. The Journal of Physiology, 588(17), 3201–3209. https://doi.org/10.1113/jphysiol.2010.191767 | |
dc.relation | Mendez, C. F., Leibiger, I. B., Leibiger, B., Høy, M., Gromada, J., Berggren, P.-O., & Bertorello, A. M. (2003). Rapid association of protein kinase C-ϵ with insulin granules is essential for insulin exocytosis. Journal of Biological Chemistry, 278(45), 44753–44757. https://doi.org/10.1074/jbc.M308664200 | |
dc.relation | Ministerio de la Protección Social. (2016). Guía de práctica clínica para el diagnóstico, tratamiento y seguimiento de la diabetes mellitus tipo 2 en la población mayor de 18 años (1st ed.). | |
dc.relation | Miralles, F., & Portha, B. (2001). Early development of beta-cells is impaired in the GK rat model of type 2 diabetes. Diabetes | |
dc.relation | Miranda, D., Fischer, G., Carranza, C., Magnitskiy, S., Casierra, F., Piedrahíta, W., & Flórez, L. E. (2009). Cultivo, poscosecha y comercialización de las pasifloráceas en Colombia: maracuyá, granadilla, gulupa y curuba. In D. Miranda, G. Fischer, C. Carranza, S. Magnitskiy, F. Casierra, W. Piedrahíta, & L. E. Flórez (Eds.), Paper Knowledge . Toward a Media History of Documents (1ra Ed). Sociedad Colombiana de Ciencias Hortícolas | |
dc.relation | Mirhoseini, M., Baradaran, A., & Rafieian-kopaei, M. (2013). Medicinal plants, diabetes mellitus and urgent needs. Journal of HerbMed Pharmacology. 2(2), 53–54 | |
dc.relation | Miroddi, M., Calapai, G., Navarra, M., Minciullo, P. L., & Gangemi, S. (2013). Passiflora incarnata L.: Ethnopharmacology, clinical application, safety and evaluation of clinical trials. Journal of Ethnopharmacology, 150(3), 791–804. https://doi.org/10.1016/j.jep.2013.09.047 | |
dc.relation | Monzón, G., Castellanos, L., Meneses, C., Forero, A. M., Rodríguez, J., Aragón, M., Jiménez, C., & Ramos, F. A. (2021). Identification of α-amylase and α-glucosidase inhibitors and ligularoside a, a new triterpenoid saponin from Passiflora ligularis Juss (sweet granadilla) leaves, by a nuclear magnetic resonance- based metabolomic study. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.0c07850 | |
dc.relation | Moon, M. K., Hur, K.-Y., Ko, S.-H., Park, S.-O., Lee, B.-W., Kim, J. H., Rhee, S. Y., Kim, H. J., Choi, K. M., & Kim, N.-H. (2017). Combination therapy of oral hypoglycemic agents in patients with type 2 diabetes mellitus. Diabetes & Metabolism Journal, 41(5), 357. https://doi.org/10.4093/dmj.2017.41.5.357 | |
dc.relation | Morimoto M. S. (2000). Mecanismos moleculares que intervienen en la regulación de la síntesis de insulina por glucosa. Revista del Hospital General Manuel Gea González, 3(3), 118-120. | |
dc.relation | Mounika, K. L. S. (2015). In silico evaluation of alpha glucosidase and alpha amylase inhibitory activity of chemical constituents from Psoralea corylifolia. International Journal of ChemTech Research, 8(11), 532–538. | |
dc.relation | Nakrani, M. N., Wineland, R. H., & Anjum, F. (2021). Physiology, Glucose Metabolism. Treasure Island (FL): StatPearls Publishing. | |
dc.relation | Nerdy, N., & Ritarwan, K. (2019). Hepatoprotective activity and nephroprotective activity of peel extract from three varieties of the passion fruit (Passiflora sp.) in the albino rat. Open Access Macedonian Journal of Medical Sciences, 7(4), 536–542. https://doi.org/10.3889/oamjms.2019.153 | |
dc.relation | Neumiller, J. J. (2009). Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. Journal of the American Pharmacists Association, 49(5), S16–S29. https://doi.org/10.1331/JAPhA.2009.09078 | |
dc.relation | Nordlie, R. C., Foster, J. D., & Lange, A. J. (1999). Regulation of glucose production by the liver. Annual Review of Nutrition, 19(1), 379–406. https://doi.org/10.1146/annurev.nutr.19.1.379 | |
dc.relation | Noshahr, Z. S., Salmani, H., Khajavi Rad, A., & Sahebkar, A. (2020). Animal models of diabetes-associated renal injury. Journal of Diabetes Research, 2020, 1–16. https://doi.org/10.1155/2020/9416419 | |
dc.relation | Nugent, D. A., Smith, D. M., & Jones, H. B. (2008). A review of islet of Langerhans degeneration in rodent models of type 2 diabetes. Toxicologic Pathology, 36(4), 529–551. https://doi.org/10.1177/0192623308318209 | |
dc.relation | O’Brien, T., Nguyen, T. T., & Zimmerman, B. R. (1998). Hyperlipidemia and diabetes mellitus. Mayo Clinic Proceedings, 73(10), 969–976. https://doi.org/10.4065/73.10.969 | |
dc.relation | Ogunbayo, O. A., Harris, R. M., Waring, R. H., Kirk, C. J., & Michelangeli, F. (2008). Inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by flavonoids: A quantitative structure-activity relationship study. IUBMB Life, 60(12), 853–858. https://doi.org/10.1002/iub.132 | |
dc.relation | Ojuka, E. O., Goyaram, V., & Smith, J. A. H. (2012). The role of CaMKII in regulating GLUT4 expression in skeletal muscle. American Journal of Physiology-Endocrinology and Metabolism, 303(3), E322–E331. https://doi.org/10.1152/ajpendo.00091.2012 | |
dc.relation | Oldoni, T. L. C., Merlin, N., Bicas, T. C., Prasniewski, A., Carpes, S. T., Ascari, J., de Alencar, S. M., Massarioli, A. P., Bagatini, M. D., Morales, R., & Thomé, G. (2021). Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Research International, 141, 110082. https://doi.org/10.1016/j.foodres.2020.110082 | |
dc.relation | Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C., & Zuñiga, F. A. (2018). Association between insulin resistance and the development of cardiovascular disease. Cardiovascular Diabetology, 17(1), 122. https://doi.org/10.1186/s12933-018-0762-4 | |
dc.relation | Oteiza, P. I., Fraga, C. G., Mills, D. A., & Taft, D. H. (2018). Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 61, 41–49. https://doi.org/10.1016/j.mam.2018.01.001 | |
dc.relation | Pacheco, G., Simão, M. J., Vianna, M. G., Garcia, R. O., Vieira, M. L. C., & Mansur, E. (2016). In vitro conservation of Passiflora —A review. Scientia Horticulturae, 211, 305–311. https://doi.org/10.1016/j.scienta.2016.09.004 | |
dc.relation | Panchanathan, S., & Rajendran, J. (2015). Evidence of anti-hyperglycemic and anti-oxidant effect of Passiflora edulis flavicarpa (sims.) in streptozotocin induced diabetic rats. Notulae Scientia Biologicae, 7(4), 383–389. 10.15835/nsb.7.4.9655 | |
dc.relation | Pandeya, P. R., Lee, K.-H., Lamichhane, R., Lamichhane, G., Poudel, A., & Jung, H.-J. (2021). Evaluation of anti-obesity activity of an herbal formulation (F2) in DIO mice model and validation of UPLC-DAD method for quality control. Applied Sciences, 11(16), 7404. https://doi.org/10.3390/app11167404 | |
dc.relation | Pandol, S. J. (2011). The exocrine pancreas. Colloquium Series on Integrated Systems Physiology: From Molecule to Function, 3(1), 1–64. https://doi.org/10.4199/C00026ED1V01Y201102ISP014 | |
dc.relation | Park, J. E., Park, J. Y., Seo, Y., & Han, J. S. (2019). A new chromanone isolated from Portulaca oleracea L. increases glucose uptake by stimulating GLUT4 translocation to the plasma membrane in 3T3-L1 adipocytes. International Journal of Biological Macromolecules, 123, 26–34. https://doi.org/10.1016/j.ijbiomac.2018.10.206 | |
dc.relation | Park, S. N., Kim, S. Y., Lim, G. N., Jo, N. R., & Lee, M. H. (2012). In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts. Journal of Industrial and Engineering Chemistry, 18(2), 680–683. https://doi.org/10.1016/j.jiec.2011.11.126 | |
dc.relation | Parpal, S., Karlsson, M., Thorn, H., & Strålfors, P. (2001). Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. Journal of Biological Chemistry, 276(13), 9670–9678. https://doi.org/10.1074/jbc.M007454200 | |
dc.relation | Parra, M., Aguilera, A., Escobar, W., Rubiano, V., & Rodríguez, A. (2010). Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de granadilla en el Departamento del Huila. Asofrucol. http://www.asohofrucol.com.co/archivos/biblioteca/biblioteca_165_AGENDA_GRANADILLA.pdf | |
dc.relation | Patel, D., Prasad, S., Kumar, R., & Hemalatha, S. (2012). An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4), 320–330. https://doi.org/10.1016/S2221-1691(12)60032-X | |
dc.relation | Patel, S., & Dutta, S. (2018). Insulin. RCSB Protein Data Bank. https://doi.org/10.2210/rcsb_pdb/GH/DM/drugs/Insulin/Insulin | |
dc.relation | Pereira Fontana, D., Cazarolli, L. H., Lavado, C., Mengatto, V., Figueiredo, M. S. R. B., Guedes, A., Pizzolatti, M. G., & Silva, F. R. M. B. (2011). Effects of flavonoids on α-glucosidase activity: Potential targets for glucose homeostasis. Nutrition, 27(11–12), 1161–1167. https://doi.org/10.1016/j.nut.2011.01.008 | |
dc.relation | Pinent, M., Castell, A., Baiges, I., Montagut, G., Arola, L., & Ardévol, A. (2008). Bioactivity of flavonoids on insulin-secreting cells. Comprehensive Reviews in Food Science and Food Safety, 7(4), 299–308. https://doi.org/10.1111/j.1541-4337.2008.00048.x | |
dc.relation | Ploug, T., & Ralston, E. (2002). Exploring the whereabouts of GLUT4 in skeletal muscle (Review). Molecular Membrane Biology, 19(1), 39–49. https://doi.org/10.1080/09687680110119229 | |
dc.relation | Prabhakar, P., & Doble, M. (2008). A target based therapeutic approach towards diabetes mellitus using medicinal plants. Current Diabetes Reviews, 4(4), 291–308. https://doi.org/10.2174/157339908786241124 | |
dc.relation | Prem, P. N., & Kurian, G. A. (2021). High-fat diet increased oxidative stress and mitochondrial dysfunction induced by renal ischemia-reperfusion injury in rat. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.715693 | |
dc.relation | Qin, G., Ma, J., Huang, Q., Yin, H., Han, J., Li, M., Deng, Y., Wang, B., Hassan, W., & Shang, J. (2018). Isoquercetin improves hepatic lipid accumulation by activating ampk pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model. International Journal of Molecular Sciences, 19(12), 4126. https://doi.org/10.3390/ijms19124126 | |
dc.relation | Queiroz, E. A. M., Paim, R. T. T., Lira, S. M., da Silva, J. Y. G., Lima, C. L. S., Holanda, M. O., Benjamin, S. R., Vieira, Í. G. P., & Guedes, M. I. F. (2018). Antihyperglycemic effect of Passiflora glandulosa cav. fruit rinds flour in streptozotocin-induced diabetic mice. Asian Pacific Journal of Tropical Medicine, 11(9), 510–517. https://doi.org/10.4103/1995-7645.242308 | |
dc.relation | Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Assessment of total phenolic, antioxidant, and antibacterial activities of Passiflora species. The Scientific World Journal, 2014, 1–10. https://doi.org/10.1155/2014/167309 | |
dc.relation | Ranilla, L. G., Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101(12), 4676–4689. https://doi.org/10.1016/j.biortech.2010.01.093 | |
dc.relation | Ravussin, E., & Smith, S. R. (2006). Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus. Annals of the New York Academy of Sciences, 967(1), 363–378. https://doi.org/10.1111/j.1749-6632.2002.tb04292.x | |
dc.relation | Rehani, P. R., Iftikhar, H., Nakajima, M., Tanaka, T., Jabbar, Z., & Rehani, R. N. (2019). Safety and mode of action of diabetes medications in comparison with 5-aminolevulinic acid (5-ALA). Journal of Diabetes Research, 2019, 4267357. https://doi.org/10.1155/2019/4267357 | |
dc.relation | Rehwald, A., Meier, B., & Sticher, O. (1994). Qualitative and quantitative reversed-phase high-performance liquid chromatography of flavonoids in Passiflora incarnata L. Pharmaceutica Acta Helvetiae, 69(3), 153–158. https://doi.org/10.1016/0031-6865(94)90017-5 | |
dc.relation | Riaz, A., Rasul, A., Hussain, G., Zahoor, M. K., Jabeen, F., Subhani, Z., Younis, T., Ali, M., Sarfraz, I., & Selamoglu, Z. (2018). Astragalin : A bioactive phytochemical with potential therapeutic activities. Advances in Pharmacological and Pharmaceutical Science, 2018, 1–15. https://doi.org/10.1155/2018/9794625 | |
dc.relation | Rickels, M. R., Norris, A. W., & Hull, R. L. (2020). A tale of two pancreases: exocrine pathology and endocrine dysfunction. Diabetologia, 63(10), 2030–2039. https://doi.org/10.1007/s00125-020-05210-8 | |
dc.relation | Roberts, C. K., Hevener, A. L., & Barnard, R. J. (2013). Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Comprehensive Physiology, 3(1), 1–58. https://doi.org/10.1002/cphy.c110062 | |
dc.relation | Rodriguez, L., Stirling, C. J., & Woodman, P. G. (1994). Multiple N-ethylmaleimide-sensitive components are required for endosomal vesicle fusion. Molecular Biology of the Cell, 5(7), 773–783. https://doi.org/10.1091/mbc.5.7.773 | |
dc.relation | Rorsman, P., Braun, M., & Zhang, Q. (2012). Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium, 51(3–4), 300–308. https://doi.org/10.1016/j.ceca.2011.11.006 | |
dc.relation | Rorsman, P., Eliasson, L., Renström, E., Gromada, J., Barg, S., & Göpel, S. (2000). The cell physiology of biphasic insulin secretion. News in Physiological Sciences, 15(2), 72–77. https://doi.org/10.1152/physiologyonline.2000.15.2.72 | |
dc.relation | Rosler, K.-H., & Goodwin, R. S. (1984). A general use of amberlite XAD-2 resin for the purification of flavonoids from aqueous fractions. Journal of Natural Products, 47(1), 188–188. https://doi.org/10.1021/np50031a036 | |
dc.relation | Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157, 107843. https://doi.org/10.1016/j.diabres.2019.107843 | |
dc.relation | Safayhi, H., Haase, H., Kramer, U., Bihlmayer, A., Roenfeldt, M., Ammon, H. P., Froschmayr, M., Cassidy, T. N., Morano, I., Ahlijanian, M. K., & Striessnig, J. (1997). L-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells. Molecular Endocrinology, 11(5), 619–629. https://doi.org/10.1210/mend.11.5.9922 | |
dc.relation | Sakaguchi, K., Takeda, K., Maeda, M., Ogawa, W., Sato, T., Okada, S., Ohnishi, Y., Nakajima, H., & Kashiwagi, A. (2016). Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetology International, 7(1), 53–58. https://doi.org/10.1007/s13340-015-0212-4 | |
dc.relation | Salaj, N., Kladar, N., Srđenović Čonić, B., Jeremić, K., Hitl, M., Gavarić, N., & Božin, B. (2021). Traditional multi-herbal formula in diabetes therapy – Antihyperglycemic and antioxidant potential. Arabian Journal of Chemistry, 14(10), 103347. https://doi.org/10.1016/j.arabjc.2021.103347 | |
dc.relation | Salehi, Ata, v. Anil Kumar, Sharopov, Ramírez-Alarcón, Ruiz-Ortega, Abdulmajid Ayatollahi, Tsouh Fokou, Kobarfard, Amiruddin Zakaria, Iriti, Taheri, Martorell, Sureda, Setzer, Durazzo, Lucarini, Santini, Capasso & Sharifi-Rad. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551. https://doi.org/10.3390/biom9100551 | |
dc.relation | Salgado, J. M., Bombarde, T. A. D., Mansi, D. N., Piedade, S. M. de S., & Meletti, L. M. M. (2010). Effects of different concentrations of passion fruit peel (Passiflora edulis) on the glicemic control in diabetic rat. Ciência e Tecnologia de Alimentos, 30(3), 784–789. https://doi.org/10.1590/S0101-20612010000300034 | |
dc.relation | Salih, N. D., Muslih, R. K., & Hamoodi, S. R. (2009). Histological liver changes in streptozotocin induced diabetic mice. International Medical Journal Malaysia, 8(1), 1-4. | |
dc.relation | Samarghandian, S., Azimi-Nezhad, M., Samini, F., & Farkhondeh, T. (2016). Chrysin treatment improves diabetes and its complications in liver, brain, and pancreas in streptozotocin-induced diabetic rats. Canadian Journal of Physiology and Pharmacology, 94(4), 388–393. https://doi.org/10.1139/cjpp-2014-0412 | |
dc.relation | Santilli, F., Simeone, P., Liani, R., & Davì, G. (2015). Platelets and diabetes mellitus. Prostaglandins & Other Lipid Mediators, 120, 28–39. https://doi.org/10.1016/j.prostaglandins.2015.05.002 | |
dc.relation | Santulli, G., Nakashima, R., Yuan, Q., & Marks, A. R. (2017). Intracellular calcium release channels: an update. The Journal of Physiology, 595(10), 3041–3051. https://doi.org/10.1113/JP272781 | |
dc.relation | Santulli, G., Pagano, G., Sardu, C., Xie, W., Reiken, S., Ascia, S. L. D., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., Marks, A. R., D’Ascia, S. L., Cannone, M., Marziliano, N., Trimarco, B., Guise, T. a, Lacampagne, A., & Marks, A. R. (2015). Calcium release channel RyR2 regulates insulin release and glucose homeostasis. The Journal of Clinical Investigation, 125(5), 1968–1978. https://doi.org/10.1172/JCI79273 | |
dc.relation | Sarto, D. A. Q. S., Siqueira, A. H. D. de, Magalhaes, F. M. de A., Caproni, K. de P., Martins, Â. M., Santos, G. B., Silva, D. B. da, Boas, B. M. V., & Garcia, J. A. D. (2018). Dry extract of Passiflora incarnata L. leaves as a cardiac and hepatic oxidative stress protector in LDLr-/- mice fed high-fat diet. Brazilian Archives of Biology and Technology, 61. https://doi.org/10.1590/1678-4324-2018180147 | |
dc.relation | Satyanarayana, K., Sravanthi, K., Shaker, I., Ponnulakshmi, R., & Selvaraj, J. (2015). Role of chrysin on expression of insulin signaling molecules. Journal of Ayurveda and Integrative Medicine, 6(4), 248. https://doi.org/10.4103/0975-9476.157951 | |
dc.relation | Scheepers, A., Joost, H., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28(5), 364–371. https://doi.org/10.1177/0148607104028005364 | |
dc.relation | Schneider-Poetsch, T., Ju, J., Eyler, D. E., Dang, Y., Bhat, S., Merrick, W. C., Green, R., Shen, B., & Liu, J. O. (2010). Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6(3), 209–217. https://doi.org/10.1038/nchembio.304 | |
dc.relation | Sepúlveda, P. M., Echeverrry, S., Costa, G., & Aragón, M. (2020). Passiflora ligularis leaf ultrasound-assisted extraction in the optimization of flavonoid content and enhancement of hypoglycemic activity. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2020.10810 | |
dc.relation | Sepúlveda Ramos, P. M. (2021). Contribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides. Universidad Nacional de Colombia. | |
dc.relation | Seyer-Hansen, K. (1976). Renal Hypertrophy in streptozotocin-diabetic rats. Clinical Science, 51(6), 551–555. https://doi.org/10.1042/cs0510551 | |
dc.relation | Shaker, S. M., Magdy, Y. M., Abd-Elaziz, L. F., El-Said, S. A., Alkharashy, O. A., & Nabeeh, E. S. (2014). Histological study on the effect of metformin on high-fat-diet-induced liver injury in adult male albino rats. The Egyptian Journal of Histology, 37(3), 592–602. https://doi.org/10.1097/01.EHX.0000452726.54766.93 | |
dc.relation | Shanmugam, S., Rajan, M., de Souza Araújo, A. A., & Narain, N. (2018). Potential of Passion (Passiflora spp.) fruit in control of type II diabetes. Current Research in Diabetes & Obesity Journal, 7(3). https://doi.org/10.19080/CRDOJ.2018.07.555712 | |
dc.relation | Sheng, L., Chen, Q., Di, L., & Li, N. (2021). Evaluation of anti-diabetic potential of corn silk in high-fat diet/ streptozotocin-induced type 2 diabetes mice model. Endocrine, Metabolic & Immune Disorders - Drug Targets, 21(1), 131–138. https://doi.org/10.2174/1871530320666200606224708 | |
dc.relation | Silva Frederico, M. J., Mascarello, A., Castro, A. J. G., Da Luz, G., Altenhofen, D., Mendes, C. P., Leal, P. C., Yunes, R. A., Nunes, R. J., & Silva, F. R. M. B. (2016). Incretinomimetic and insulinomimetic effect of (2E)-N′-(1′-Naphthyl)-3,4,5-trimethoxybenzohydrazide for glycemic homeostasis. Journal of Cellular Biochemistry, 117(5), 1199–1209. https://doi.org/10.1002/jcb.25403 | |
dc.relation | Simons, K., & Gerl, M. J. (2010). Revitalizing membrane rafts: new tools and insights. Nature Reviews Molecular Cell Biology, 11(10), 688–699. https://doi.org/10.1038/nrm2977 | |
dc.relation | Skelin Klemen, M., Dolenšek, J., Slak Rupnik, M., & Stožer, A. (2017). The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets, 9(6), 109–139. https://doi.org/10.1080/19382014.2017.1342022 | |
dc.relation | Skovsø, S. (2014). Modeling type 2 diabetes in rats using high fat diet and streptozotocin. Journal of Diabetes Investigation, 5(4), 349–358. https://doi.org/10.1111/jdi.12235 | |
dc.relation | Smart, E. J., & Anderson, R. G. W. (2002). Alterations in membrane cholesterol that affect structure and function of caveolae. Methods in enzymology, 353, 131-139 https://doi.org/10.1016/S0076-6879(02)53043-3 | |
dc.relation | Smirnov, A. V., Snigur, G. L., & Voronkov, M. P. (2012). Pancreatic islet beta-cell apoptosis in experimental diabetes mellitus. Apoptosis and Medicine. InTech. https://doi.org/10.5772/51411 | |
dc.relation | Soares D, J., Leal P, A. B., Silva, J., Almeida, JacksonR. G. S., & de Oliveira, H. (2017). Influence of flavonoids on mechanism of modulation of insulin secretion. Pharmacognosy Magazine, 13(52), 639-646. https://doi.org/10.4103/pm.pm_87_17 | |
dc.relation | Somwar, R., Kim, D. Y., Sweeney, G., Huang, C., Niu, W., Lador, C., Ramlal, T., & Klip, A. (2001). GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochemical Journal, 359(3), 639–649. https://doi.org/10.1042/bj3590639 | |
dc.relation | Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320. https://doi.org/10.1016/j.phrs.2005.05.004 | |
dc.relation | Sudasinghe, H. P., & Peiris, D. C. (2018). Hypoglycemic and hypolipidemic activity of aqueous leaf extract of Passiflora suberosa L. PeerJ, 6, E4389. https://doi.org/10.7717/peerj.4389 | |
dc.relation | Suen, J., Thomas, J., Kranz, A., Vun, S., & Miller, M. (2016). Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: A systematic review. Healthcare, 4(3), 69. https://doi.org/10.3390/healthcare4030069 | |
dc.relation | Sugano, M., Yamato, H., Hayashi, T., Ochiai, H., Kakuchi, J., Goto, S., Nishijima, F., Iino, N., Kazama, J. J., Takeuchi, T., Mokuda, O., Ishikawa, T., & Okazaki, R. (2006). High-fat diet in low-dose-streptozotocin-treated heminephrectomized rats induces all features of human type 2 diabetic nephropathy: A new rat model of diabetic nephropathy. Nutrition, Metabolism and Cardiovascular Diseases, 16(7), 477–484. https://doi.org/10.1016/j.numecd.2005.08.007 | |
dc.relation | Sweeney, G., Somwar, R., Ramlal, T., Volchuk, A., Ueyama, A., & Klip, A. (1999). An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3-L1 adipocytes and L6 Myotubes. Journal of Biological Chemistry, 274(15), 10071–10078. https://doi.org/10.1074/jbc.274.15.10071 | |
dc.relation | Tajima, K., Shirakawa, J., Okuyama, T., Kyohara, M., Yamazaki, S., Togashi, Y., & Terauchi, Y. (2017). Effects of metformin on compensatory pancreatic β-cell hyperplasia in mice fed a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, 313(3), E367–E380. https://doi.org/10.1152/ajpendo.00447.2016 | |
dc.relation | Tal, M., Liang, Y., Najafi, H., Lodish, H. F., & Matschinsky, F. M. (1992). Expression and function of GLUT-1 and GLUT-2 glucose transporter isoforms in cells of cultured rat pancreatic islets. Journal of Biological Chemistry, 267(24), 17241–17247. https://doi.org/10.1016/S0021-9258(18)41918-7 | |
dc.relation | Tamayo, D. C., Camacho, S. M., & López, P. A. (2015). Caracterización de pacientes con diabetes mellitus tipo 2 atendidos por médicos residentes de medicina familiar en Bogotá, Colombia. Revista Desafíos, 9(2), 17–24. | |
dc.relation | Teixeira, L. S., Lima, A. S., Boleti, A. P. A., Lima, A. A. N., Libório, S. T., de Paula, L., Oliveira, M. I. B., Lima, E. F., Costa, G. M., Reginatto, F. H., & Lima, E. S. (2014). Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. Journal of Natural Medicines, 68(2), 316–325. https://doi.org/10.1007/s11418-013-0800-1 | |
dc.relation | Tesh, G. H., & Allen, T. J. (2007). Rodent models of streptozotocin-induced diabetic nephropathy (Methods in Renal Research). Nephrology, 12(3), 261–266. https://doi.org/10.1111/j.1440-1797.2007.00796.x | |
dc.relation | Thiyagarajah, P., Kuttan, S. C., Lim, S. C., Teo, T. S., & Das, N. P. (1991). Effect of myricetin and other flavonoids on the liver plasma membrane Ca2+ pump kinetics and structure-function relationships. Biochemical Pharmacology, 41(5), 669–675. https://doi.org/10.1016/0006-2952(91)90065-D | |
dc.relation | Thompson, B., & Satin, L. S. (2021). Beta‐cell ion channels and their role in regulating insulin secretion. Comprehensive Physiology, 11(4), 1-21. https://doi.org/10.1002/cphy.c210004 | |
dc.relation | Thorens, B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1 | |
dc.relation | Tiwari, B. K., Pandey, K. B., Abidi, A. B., & Rizvi, S. I. (2013). Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers, 2013, 1–8. https://doi.org/10.1155/2013/378790 | |
dc.relation | Tremblay, F., Dubois, M.-J., & Marette, A. (2003). Regulation of GLUT4 traffic and function by insulin and contraction in skeletal muscle. Frontiers in Bioscience, 8(12), d1072–d1084. | |
dc.relation | Trube, G., Rorsman, P., & Ohno-Shosaku, T. (1986). Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Archiv, 407(5), 493–499. | |
dc.relation | Tundis, R., Loizzo, M. R., & Menichini, F. (2010). Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini-Reviews in Medicinal Chemistry, 10(4), 315–331. https://doi.org/10.2174/138955710791331007 | |
dc.relation | Tunduguru, R., & Thurmond, D. C. (2017). Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-Ing them out. Frontiers in Endocrinology, 8. https://doi.org/10.3389/fendo.2017.00329 | |
dc.relation | Unuofin, J. O., & Lebelo, S. L. (2020). Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of Type 2 Diabetes: An Updated Review. Oxidative Medicine and Cellular Longevity, 2020. https://doi.org/10.1155/2020/1356893 | |
dc.relation | Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267–282. | |
dc.relation | Vasiljević, J., Torkko, J. M., Knoch, K. P., & Solimena, M. (2020). The making of insulin in health and disease. Diabetologia, 63(10), 1981-1989. https://doi.org/10.1007/s00125-020-05192-7 | |
dc.relation | Viera, W., Shinohara, T., Samaniego, I., Sanada, A., Terada, N., Ron, L., Suárez-Tapia, A., & Koshio, K. (2022). Phytochemical composition and antioxidant activity of Passiflora spp. germplasm grown in Ecuador. Plants, 11(3), 328. https://doi.org/10.3390/plants11030328 | |
dc.relation | Vinayagam, R., & Xu, B. (2015). Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutrition & Metabolism, 12(1), 60. https://doi.org/10.1186/s12986-015-0057-7 | |
dc.relation | Wang, H., Xia, W., Long, G., Pei, Z., Li, Y., Wu, M., Wang, Q., Zhang, Y., Jia, Z., & Chen, H. (2020). Isoquercitrin ameliorates cisplatin-induced nephrotoxicity via the inhibition of apoptosis, inflammation, and oxidative stress. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.599416 | |
dc.relation | Wang, Y., Sun, G., Sun, J., Liu, S., Wang, J., Xu, X., & Miao, L. (2013). Spontaneous type 2 diabetic rodent models. Journal of Diabetes Research, 2013, 1–8. https://doi.org/10.1155/2013/401723 | |
dc.relation | Wilkinson, S. E., Parker, P. J., & Nixon, J. S. (1993). Isoenzyme specificity of bisindolylmaleimides, selective inhibitors of protein kinase C. Biochemical Journal, 294(2), 335–337. https://doi.org/10.1042/bj2940335 | |
dc.relation | Wood, I. S., & Trayhurn, P. (2003). Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. British Journal of Nutrition, 89(1), 3–9. https://doi.org/10.1079/BJN2002763 | |
dc.relation | World Health Organization (WHO). (2021). Diabetes. https://www.who.int/health-topics/diabetes#tab=tab_1 | |
dc.relation | Xiao, J., Capanoglu, E., Jassbi, A. R., & Miron, A. (2016). Advance on the Flavonoid C -glycosides and health benefits. Critical Reviews in Food Science and Nutrition, 56(sup1), S29–S45. https://doi.org/10.1080/10408398.2015.1067595 | |
dc.relation | Xie, L., Deng, Z., Zhang, J., Dong, H., Wang, W., Xing, B., & Liu, X. (2022). Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods, 11(6), 882. https://doi.org/10.3390/foods11060882 | |
dc.relation | Xu, Y. C., Leung, S. W. S., Leung, G. P. H., & Man, R. Y. K. (2015). Kaempferol enhances endothelium-dependent relaxation in the porcine coronary artery through activation of large-conductance Ca2+-activated K+ channels. British Journal of Pharmacology, 172(12), 3003–3014. https://doi.org/10.1111/bph.13108 | |
dc.relation | Yanardag, R., Ozsoy-Sacan, O., Bolkent, S., Orak, H., & Karabulut-Bulan, O. (2005). Protective effects of metformin treatment on the liver injury of streptozotocin-diabetic rats. Human & Experimental Toxicology, 24(3), 129–135. https://doi.org/10.1191/0960327104ht507oa | |
dc.relation | Yang, H., & Yang, L. (2016). Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. Journal of Molecular Endocrinology, 57(2), R93–R108. https://doi.org/10.1530/JME-15-0316 | |
dc.relation | Yang, S.-N., & Berggren, P.-O. (2006). The role of voltage-gated calcium channels in pancreatic β-cell physiology and pathophysiology. Endocrine Reviews, 27(6), 621–676. https://doi.org/10.1210/er.2005-0888 | |
dc.relation | Yang, Y., Smith, D. L., Keating, K. D., Allison, D. B., & Nagy, T. R. (2014). Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obesity, 22(10), 2147–2155. https://doi.org/10.1002/oby.20811 | |
dc.relation | Yaras, N., Ugur, M., Ozdemir, S., Gurdal, H., Purali, N., Lacampagne, A., Vassort, G., & Turan, B. (2005). Effects of diabetes on ryanodine receptor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes, 54(11). https://doi.org/10.2337/diabetes.54.11.3082 | |
dc.relation | Youl, E., Bardy, G., Magous, R., Cros, G., Sejalon, F., Virsolvy, A., Richard, S., Quignard, J. F., Gross, R., Petit, P., Bataille, D., & Oiry, C. (2010). Quercetin potentiates insulin secretion and protects INS-1 pancreatic -cells against oxidative damage via the ERK1/2 pathway. British Journal of Pharmacology, 161(4), 799–814. https://doi.org/10.1111/j.1476-5381.2010.00910.x | |
dc.relation | Youngren, J. F. (2007). Regulation of insulin receptor function. Cell. Mol. Life Sci, 64, 873–891. https://doi.org/10.1007/s00018-007-6359-9 | |
dc.relation | Zhang, L., Zhang, S.-T., Yin, Y.-C., Xing, S., Li, W.-N., & Fu, X.-Q. (2018). Hypoglycemic effect and mechanism of isoquercitrin as an inhibitor of dipeptidyl peptidase-4 in type 2 diabetic mice. RSC Advances, 8(27), 14967–14974. | |
dc.relation | Zhang, M., Lv, X.-Y., Li, J., Xu, Z.-G., & Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2008, 1–9. https://doi.org/10.1155/2008/704045 | |
dc.relation | Zhang, Q., Ramracheya, R., Lahmann, C., Tarasov, A., Bengtsson, M., Braha, O., Braun, M., Brereton, M., Collins, S., Galvanovskis, J., Gonzalez, A., Groschner, L. N., Rorsman, N. J. G., Salehi, A., Travers, M. E., Walker, J. N., Gloyn, A. L., Gribble, F., Johnson, P. R. V., & Rorsman, P. (2013). Role of KATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metabolism, 18(6), 871–882. https://doi.org/10.1016/j.cmet.2013.10.014 | |
dc.relation | Zhang, S., Xu, H., Yu, X., Wu, Y., & Sui, D. (2017). Metformin ameliorates diabetic nephropathy in a rat model of low-dose streptozotocin-induced diabetes. Experimental and Therapeutic Medicine, 14(1), 383–390. https://doi.org/10.3892/etm.2017.4475 | |
dc.relation | Zhang, Y., & Liu, D. (2011). Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. European Journal of Pharmacology, 670(1), 325–332. https://doi.org/10.1016/j.ejphar.2011.08.011 | |
dc.relation | Zhao, F., Li, P., Chen, S. R. W., Louis, C. F., & Fruen, B. R. (2001). Dantrolene inhibition of ryanodine receptor Ca2+ release channels: molecular mechanism and isoform selectivity. Journal of Biological Chemistry, 276(17), 13810–13816. https://doi.org/10.1074/jbc.M006104200 | |
dc.relation | Zhou, Y.-J., Xu, N., Zhang, X.-C., Zhu, Y.-Y., Liu, S.-W., & Chang, Y.-N. (2021). Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. Journal of Agricultural and Food Chemistry, 69(20), 5618–5627. https://doi.org/10.1021/acs.jafc.1c01109 | |
dc.relation | Zhu, M., Li, J., Wang, K., Hao, X., Ge, R., & Li, Q. (2016). Isoquercitrin inhibits hydrogen peroxide-induced apoptosis of EA.hy926 cells via the PI3K/Akt/GSK3β signaling pathway. Molecules, 21(3), 356. https://doi.org/10.3390/molecules21030356 | |
dc.relation | Zucolotto, S. M., Fagundes, C., Reginatto, F. H., Ramos, F. A., Castellanos, L., Duque, C., & Schenkel, E. P. (2012). Analysis of C -glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochemical Analysis, 23(3), 232–239. https://doi.org/10.1002/pca.1348 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Estudio in vivo e in vitro del efecto antidiabético de un extracto de hojas de passiflora ligularis | |
dc.type | Trabajo de grado - Doctorado | |