dc.contributorOsorio Roa, Coralia
dc.contributorGrupo aditivos naturales de aroma y color- GANAC
dc.contributorGARCIA CHACON, JULIANA MARIA [0000-0002-8248-9107]
dc.contributorGARCIA CHACON, JULIANA MARIA
dc.contributorGARCIA CHACON, JULIANA MARIA
dc.contributorGARCIA CHACON, JULIANA MARIA
dc.contributorGARCIA CHACON, JULIANA
dc.creatorGarcía Chacón, Juliana María
dc.date.accessioned2023-07-05T15:04:35Z
dc.date.accessioned2023-08-25T13:51:32Z
dc.date.available2023-07-05T15:04:35Z
dc.date.available2023-08-25T13:51:32Z
dc.date.created2023-07-05T15:04:35Z
dc.date.issued2023-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84142
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8427023
dc.description.abstractEn esta tesis se presenta el estudio de las propiedades sensoriales y biofuncionales del fruto de camu-camu (Myrciaria dubia) proveniente de la Amazonía Colombiana. El aroma de la fruta se estudió en un extracto de volátiles obtenido mediante la técnica SAFE (Solvent Assisted Flavor Evaporation), el cual se analizó por GC-O (cromatografía de gases acoplada a olfatometría) y por GC-MS (cromatografía de gases acoplada a espectrometría de masas), identificando cuatro compuestos activos olfativamente en el aroma de esta fruta: acetato de isoamilo, -pineno, limoneno y B-cariofileno. Posteriormente se evaluó la inhibición de la enzima ACE-1 (actividad antihipertensiva) y de la a-amilasa y a-glucosidasa, encontrando que la actividad antihiperglicémica de esta fruta era bastante promisoria. Por lo tanto, se realizó una partición sucesiva del extracto polar de la fruta (pulpa y cáscara) con solventes de polaridad creciente (pentano, diclorometano, acetato de etilo, butanol y agua). A partir del fraccionamiento bioguiado, y análisis por HPLC-MS se identificaron el ácido (S)-4-butoxi- 2-hidroxi-4-oxo-butanoico y el ácido (S)-4-butoxi-3-hidroxi-4-oxo-butanoico, como potentes inhibidores de la a−amilasa y la a−glucosidasa. El uso de herramientas de docking- molecular demostró que la actividad antihiperglicémica del ácido málico de la fruta se potenciaba por la presencia de los grupos alquilo en los correspondientes esteres. A partir de la fruta se obtuvieron sólidos por liofilización y por spray-drying. En el proceso de microencapsulación, se utilizó un diseño experimental 3x2 con tres tipos de agente encapsulante (maltodextrina, suero proteico y mezcla 1:1 de los dos) y dos temperaturas de entrada (150 y 180 C). Se realizó la caracterización fisicoquímica, morfológica y biofuncional de los sólidos. Con base en el contenido de los compuestos bioactivos (antocianinas, ácido ascórbico y ácido málico), se seleccionaron tres sólidos que fueron incorporados en dos tipos de bebidas (un yogurt y mosto de uva blanca) que se sometieron a evaluación sensorial. El estudio de la bioaccesibilidad de los sólidos usando el modelo estático de digestión gastrointestinal in vitro, mostró una mayor retención de compuestos bioactivos, y una adecuada liberación de los compuestos en el tracto gastrointestinal. Así se concluye que la deshidratación de la fruta permite aumentar su vida útil y preservar las propiedades biofuncionales de la fruta. (Texto tomado de la fruta)
dc.description.abstractThis thesis presents the study of the sensory and biofunctional properties of the camu-camu fruit (Myrciaria dubia) from the Colombian Amazon. The aroma of the fruit was studied in a volatile extract obtained using the SAFE (Solvent Assisted Flavor Evaporation) technique, which was analyzed by GC-O (gas chromatography coupled to olfactometry) and by GC-MS (gas chromatography coupled to mass spectrometry), identifying four olfactory active compounds in the aroma of this fruit: isoamyl acetate,  -pinene, limonene and  -caryophyllene. Subsequently, the inhibition of the ACE-1 enzyme (antihypertensive activity) and of -amylase and -glucosidase was evaluated, finding that the antihyperglycemic activity of this fruit was quite promising. Therefore, a successive partitioning of the polar extract of the fruit (pulp and peel) was carried out with solvents of increasing polarity (pentane, dichloromethane, ethyl acetate, butanol, and water). From bioguided fractionation, and HPLC-MS analysis, (S)-4-butoxy-2-hydroxy-4-oxo-butanoic acid and (S)-4-butoxy-3- hydroxy-4- oxo-butanoic were isolated and identified, as potent inhibitors of -amylase and -glucosidase. The use of molecular-docking tools demonstrated that the antihyperglycemic activity of fruit malic acid was enhanced by the presence of alkyl groups in the corresponding esters. Different powders were obtained from the fruit by lyophilization and by spray-drying. In the microencapsulation process, a 3x2 experimental design was used with three types of encapsulating agent (maltodextrin, whey protein, and a 1:1 mixture of both) and two inlet temperatures (150 and 180 C). The physicochemical, morphological and biofunctional characterization of the solids was carried out. Based on the content of bioactive compounds (anthocyanins, ascorbic acid, and malic acid), three solids were selected to be incorporated into two types of beverages (a yogurt and white grape juice) that were subjected to sensory evaluation. The study of the bioaccessibility of camu-camu powders using the static model of gastrointestinal digestion in vitro, showed a greater retention of bioactive compounds, and an adequate release of the compounds in the gastrointestinal tract. Thus, it was concluded that the dehydration processes allow to increase the fruit shelf-life and preserve its biofunctional properties.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Doctorado en Ciencia y Tecnología de Alimentos
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá,Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlianza Región (2021). Contexto, tendencias y oportunidades del mercado de los derivados lácteos en Antioquia, 2021, Cámara de Industria y Comercio Colombio-alemana. Consultado el 04 de octubre de 2022. https://www.camaramedellin.com.co/Portals/0/Documentos/2021/ESTUDIO%20DE%20TENDENCIAS%20DERIVADOS%20LACTEOS%202021%20abril%2012.pdf?ver=2021-04-13-140402-407
dc.relationAnnunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., Tejada, S. (2020). Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology, 139, 111248. doi: 10.1016/j.fct.2020.111248
dc.relationCunha-Santos, E.C.M, Viganó, J., Neves, D.A., Martínez, J., Godoy, H.T. (2019). Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Research International, 115, 160-166. doi: 10.1016/j.foodres.2018.08.031
dc.relationDonado-Pestana, C. M., Moura, M.H, Araujo, R.L., Lima Santiago, G., Barros, H. R. M., Genovese, M. I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. doi: 10.1016/j.cofs.2018.01.001
dc.relationFracassetti, D., Costa, C., Moulay, L., Tomás-Barberán, F. A. (2013). Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chemistry, 139, 578–588. doi: 10.1016/j.foodchem.2013.01.121
dc.relationFernandes, I., Oliveira, H., Marques, C., Faria, A., Calhau, C., Mateus, N., Freitas, V. (2020). Dietary Anthocyanins. Dietary Polyphenols, 245–282. Portico. doi: 10.1002/9781119
dc.relationFeng, Y., Ma, X., Kong, B., Chen, Q., Liu, Q. (2021). Ethanol induced changes in structural, morphological, and functional properties of whey proteins isolates: Influence of ethanol concentration. Food Hydrocolloids, 111, 106379. doi: 10.1016/j.foodhyd.2020.1063
dc.relationFidelis, M., Viera do Carmo, M. A., da Cruz, T. M., Azevedo, L., Myoda, T., Miranda Furtado, M., Boscacci Marques, M., Sant’Ana, A. S., Genovese, M. I., Young Oh, W., Wen, M., Shahidi, F., Zhangh, L., Franchin, M., de Alencar, S. M., Rosalen, P. L., Granato, D. (2020). Camu-camu seed (Myrciaria dubia) – From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 310, 125909. doi: 10.1016/j.foodchem.2019.125
dc.relationGaravito, G., Clavijo, R., Luengas, P., Palacios, P., Arias, M. H. (2021). Assessment of biodiversity goods for the sustainable development of the chagra in an indigenous community of the Colombian Amazon: local values of crops. Journal of Ethnobiology and Ethnomedicine, 17, 23. doi: 10.1186/s13002-021-00453-0
dc.relationHernández, M. S., Barrera, J.A. (2010). Camu camu: Instituto Amazónico de Investigaciones Científicas - Sinchi. Consultado el 24 de septiembre de 2022. https://www.sinchi.org.co/files/publicaciones/publicaciones/pdf/Camu%20camu%20baja.pdf
dc.relationMincetur (2020). Ministerio de Comercio Exterior y Turismo: Exportaciones de camu camu alcanzaron récord histórico en 2020. Consultado el 24 de septiembre de 2022. https://www.gob.pe/institucion/mincetur/noticias/345752-exportaciones-de-camu-camu-alcanzaron-record-historico-en-2020
dc.relationOMS (2019). Noncommunicable diseases: WHO. Consultado el 24 de septiembre de 2022. https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-mortality
dc.relationRay, S., Raychaudhuri, U., Chakraborty, R. (2016). An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience, 13, 76–83. doi: 10.1016/j.fbio.2015.12.009
dc.relationSIEA (2021). Sistema Integrado de Estadística Agraria: Calendario de cosechas de camu camu (%). Consultado el 24 de septiembre de 2022. https://siea.midagri.gob.pe/portal/calendario/
dc.relationZanatta, C.F., Mercadante, A.Z. (2007). Carotenoid composition from the Brazilian tropical fruit camu-camu (Myrciaria dubia). Food Chemistry, 101, 1526–1532. doi: 10.1016/j.foodchem.2006.04.004
dc.relationbdelsattar, A.S., Dawoud, A., Helal, M.A. (2020). Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology, 1, 66-95. doi: 10.1080/17435390.2020.1842537
dc.relationAbot, A., Brochot, A., Pomié, N., Wemelle, E., Druart, C., Régnier, M., Delzenne, N. M., de Vos, W.M., Knauf, C., Cani, P. D. (2022). Camu-camu reduces obesity and improves diabetic profiles of obese and diabetic mice: A dose-ranging study. Metabolites, 12, 301. doi: 10.3390/metabo12040301
dc.relationAguiar, J. P. L., & Souza, F. C. A. (2016). Camu-Camu super fruit (Myrciaria dubia (H.B.K) Mc Vaugh) at different maturity stages. African Journal of Agricultural Research, 11(28), 2519-2523. doi: 10.5897/AJAR2016.11167
dc.relationAguirre-Neira, J.C., Sedrez dos Reis. M., Rojas Cardozo, M.A., Raz, L., Clement, C.R. (2020). Physical and chemical variability of Camu-camu fruits in cultivated and uncultivated areas of the Colombian Amazon. Revista Brasileira de Fruticultura, 42, e-545. doi: 10.1590/0100-29452020545
dc.relationAkter, M.S., Oh, S., Eun, J. B., Ahmed, M. (2011). Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Research International, 44, 1728–1732. doi: 10.1016/j.foodres.2011.03.045
dc.relationAlakolanga, A. G. A. W., Savitri Kumar, N., Jayasinghe, L., Fujimoto. Y. (2015). Antioxidant property and  -glucosidase, -amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. Journal of Food Science and Technology, 52, 8383-8388. doi: 10.1007/s13197-015-1937- 6.
dc.relationAlbuquerque, B. R., Pereira, C., Calhelha, R. C., Alves, M. J., Abreu, R. M. V., Barros, L., Oliveira, M. B. P. P., Ferreira, I. C. F. R. (2020). Jabuticaba residues (Myrciaria jaboticaba (Vell.) Berg) are rich sources of valuable compounds with bioactive
dc.relationAndrade, J. K. S., Barros, R. G. C., Pereira, U. C., Gualberto, N. C., de Oliveira, C. S., Shanmugam, S., & Narain, N. (2022). α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chemistry, 373, 131494. doi: 10.1016/j.foodchem.2021.131494
dc.relationAnnunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., Tejada, S. (2020). Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the managementof diabetes. Food and Chemical Toxicology, 139, 111248. doi: 10.1016/j.fct.2020.111248
dc.relationAraújo, P.A.C., Garcia, V.A.S., Osiro, D., França, D.S., Vanin, F.M., Carvalho, R.A. (2022). Active compounds from the industrial residue of dry camu-camu. Food Science of Technology, 42, e0532. doi: 10.1590/fst.05321
dc.relationAzevedo, L., de Araujo Ribeiro, P. F., de Carvalho Oliveira, J. A., Correia, M. G., Ramos, F. M., de Oliveira, E. B., Stringheta, P. C. (2019). Camu-camu (Myrciaria dubia) from commercial cultivation has higher levels of bioactive compounds than native cultivation (Amazon Forest) and presents antimutagenic effects in vivo. Journal of the Science of Food and Agriculture, 90, 624–631. doi: 10.1002/jsfa.9224
dc.relationBalisteiro, D.M., de Araujo, R.L., Giacaglia; L.R., Genovese, M.I. (2017). Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International, 100, 196–203. doi: 10.1016/j.foodres.2017.08.044
dc.relationCaldas Moura, M.H., Cunha, M.G., Roquim Alezandro, M., Genovese, M.I. (2018). Phenolic-rich jaboticaba (Plinia jaboticaba (Vell.) Berg) extracts prevent high-fat- sucrose diet-induced obesity in C57BL/6 mice. Food Research International, 107, 48-60. doi: 10.1016/j.foodres.2018.01.071
dc.relationCamargo Neves, L., da Silva, V.X., Alves Pontis, J., Flach, A., Ruffo Roberto, S. (2015). Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia (H.B.K.) Mc Vaugh] fruits. Scientia Horticulturae, 186, 223–229. doi: 10.1016/j.scienta.2015.02.031
dc.relationCampelo, P. H., Alves Filho, E. G., Silva, L. M. A., de Brito, E. S., Rodrigues, S., Fernandes, F. A. N. (2020). Modulation of aroma and flavor using dielectric barrier discharge plasma technology in a juice rich in terpenes and sesquiterpenes. LWT, 130, 109644. doi: 10.1016/j.lwt.2020.109644
dc.relationCarmo, M. A. V. D., Fidelis, M., Girotto Pressete, C., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, 108551. doi: 10.1016/j.foodres.2019.108551
dc.relationCastro, J. C., Maddox, J. D., Cobos, M., & Imán, S. A. (2018). Myrciaria dubia “Camu Camu” Fruit: Health-promoting phytochemicals and functional genomic characteristics. En J. R. Soneji, & M. Nageswara-Rao (Eds.), Breeding and Health Benefits of Fruit and Nut Crops. IntechOpen. doi: 10.5772/intechopen.73213
dc.relationCastro, J. C., Maddox, J. D., Cobos, M., Paredes, J. D., Marapara, J. L., Braga, J., Imán, S. A., Rodríguez, H. N., & Castro, C. G. (2020). Bioactive compounds of camu- Camu (Myrciaria dubia (Kunth) McVaugh). En: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. (pp. 329–352). https://doi.org/10.1007/978-3-030-30182-8_21
dc.relationConceição, N., Albuquerque, B. R., Pereira, C., Corrêa, R.C.G., Lopes, C. B., Calhelha, R. C., Alves, M.J., Barros, L., Ferreira, I. C. F. R. (2020). By-products of Camu-Camu [Myrciaria dubia (Kunth) McVaugh] as promising sources of bioactive high added- value food ingredients: Functionalization of yogurts. Molecules, 25, 70. doi: 10.3390/molecules25010070
dc.relationCunha-Santos, E.C.M, Viganó, J., Neves, D.A., Martínez, J., Godoy, H.T. (2019). Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: evaluation of extraction and analytical methods. Food Research International, 115, 160-166. doi: 10.1016/j.foodres.2018.08.031
dc.relationDas, S., Dutta, M., Chaudhury, K., De, B. (2016). Metabolomic and chemometric study of Achras sapota L. fruit extracts for identification of metabolites contributing to the inhibition of α‐amylase and α‐glucosidase. European Food Research and Technology, 242, 733–743. doi: 10.1007/s00217-015-2581-0.
dc.relationdo Amaral Souza, F. das Ch., Silva, E. P., Lopes Aguiar, J.P. (2020). Vitamin characterization and volatile composition of camu-camu (Myrciaria dubia (HBK) McVaugh, Myrtaceae) at different maturation stages. Food Science Technology (Campinas), 41 (4), 961-966. doi: 10.1590/fst.27120
dc.relationde Ancos, B.; Cilla, A.; Barberá, R.; Sánchez-Moreno, C.; Cano, M. P. (2017). Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry, 225, 114– 124. doi: 10.1016/j.foodchem.2016.12.098
dc.relationde Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive- rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. doi: 10.1016/j.foodres.2014.05.0
dc.relationde Sales, P. M., de Souza, P. M., Dartora, M., Resck, I. S., Simeoni, L. A., Fonseca-Bazzo, Y. M., de Oliveira Magalhães. (2017). Pouteria torta epicarp as a useful source of -amylase inhibitor in the control of type 2 diabetes. Food and Chemical Toxicology, 109, 962–969. doi: 10.1016/j.fct.2017.03.015
dc.relationde Souza Schmidt Gonçalves, A. E., Lellis-Santos, C., Curi, R., Lajolo, F. M., Genovese, M. I. (2014). Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats. Food Research International, 64, 1–8. doi: 10.1016/j.foodres.2014.05.0
dc.relationDjaharuddin, I., Munawwarah, S., Nurulita, A., Ilyas, M., Tabri, N. A., Lihawa, N. (2021). Comorbidities and mortality in COVID-19 patients. Gaceta Sanitaria, 35, S530- S532. doi: 10.1016/j.gaceta.2021.10.085
dc.relationDoseděl, M., Jirkovský, E., Macáková, K., Krčmová, L.K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L., Mladěnka, P. (2021). Vitamin C—Sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients, 13(2), 615. doi: 10.3390/nu13020615
dc.relationDonado-Pestana, C.M., Moura, M.H, Araujo, R.L., Lima Santiago, G., Barros, H.R.M., Genovese, M.I. (2018). Polyphenols from Brazilian native Myrtaceae fruits and their potential health benefits against obesity and its associated complications. Current Opinion in Food Science, 19, 42–49. doi: 10.1016/j.cofs.2018.01.001
dc.relationDu, Q., Tang, J., Xu, M., Lyu, F., Zhang, J., Qiu, Y., Ding, Y. (2021). Whey protein and maltodextrin-stabilized oil-in-water emulsions: Effects of dextrose equivalent. Food Chemistry, 339, 128094. doi: 10.1016/j.foodchem.2020.1
dc.relationrukainure, O. L., Sanni, O., Islam, S. (2018). Clerodendrum volubile: Phenolics and Applications to Health. En Polyphenols: Mechanisms of Action in Human Health and Disease. chapter 6 (2nd ed., pp. 53–68). Elsevier Inc. doi: 10.1016/B978-0- 12-813006-3.00006-4
dc.relationFarias, D. P., Fernández de Araújo, F., Neri-Numa, I.A., Pastore, G.M. (2021). Antidiabetic potential of dietary polyphenols: A mechanistic review. Food Research International, 145, 110383. doi: 10.1016/j.foodres.2021.110383
dc.relationFelkle, D., Jarczynski, M., Zięba, K., Nazimek, K. (2022). The immunomodulatory effects of antihypertensive therapy: A review. Biomedicine & Pharmacotherapy, 153, 113287. doi: 10.1016/j.biopha.2022.113287
dc.relationFernandes de Araújo, F., Neri-Numa, I. A, de Paulo Farias, D., Miranda Castro da Cunha, G.R., Pastore, G.M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57-72. doi: 10.1016/j.foodres.2019.03.018
dc.relationFernandes, I., Oliveira, H., Marques, C., Faria, A., Calhau, C., Mateus, N., Freitas, V. (2020). Dietary Anthocyanins. En: Dietary Polyphenols, eds F.A. Tomás-Barberán, A. González-Sarrías and R. García-Villalba. Pp. 245–282. Portico. doi: 10.1002/9781119
dc.relationFerreira, L.G., Dos Santos, R.N., Oliva, G., Andricopulo, A.D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384-13421. doi: 10.3390/molecules200713384
dc.relationFeyza, M. S., Selin, S., Ece, A. S. (2022). Fundamentals of molecular docking and comparative analysis of protein–small-molecule docking approaches. En (Ed.), Molecular Docking - Recent Advances. IntechOpen. doi: 10.5772/intechopen.105815
dc.relationFidelis, M., Sousa, J., Bragueto, G., Vieira, M., Azevedo, L., Cristina, M., & Granato, D. (2018). In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food and Chemical Toxicology, 120, 479–490. doi: 10.1016/j.fct.2018.07.043
dc.relationFigueiredo, J. A., Andrade Teixeira, M., Campelo, P. H., Lago, A. M.T., Pereira de Souza, T., Yoshida, M. I., Rodrigues de Oliveira, C., Pereira, A. P. A., Pastore, M. G., Sanches, E. A., Alvarenga Botrel, D., Vilela Borges, S. (2020). Encapsulation of camu-camu extracts using prebiotic biopolymers: controlled release of bioactive compounds and effect on their physicochemical and thermal properties. Food Research International, 137, 109563. doi: 10.1016/j.foodres.2020.109563
dc.relationFranco, M.R., Shibamoto, T. (2000). Volatile composition of some Brazilian fruits: umbu- caja (Spondias citherea), camu-camu (Myrciaria dubia), Araça-boi (Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum). Journal of Agricultural Food Chemistry, 8(4), 1263-5. doi: 10.1021/jf9900074. PMID: 10775382.
dc.relationFujita, A., Sarkar, D., Wu, S., Kennelly, E., Shetty, K., Genovese, M.I. (2015). Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc.Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Research International, 77, 194–203. doi: 10.1016/j.foodres.2015.07.009
dc.relationFujita, A., Sarkar, D., Ines, M., Shetty, K. (2017). Improving anti-hyperglycemic and anti- hypertensive properties of camu- camu (Myriciaria dubia Mc. Vaugh) using lactic acid bacterial fermentation. Process Biochemistry, 59, 133–140. doi: 10.1016/j.procbio.2017.05.017
dc.relationGarcía, J. M., Giuffrida, D., Dugo, P., Mondello, L., Osorio, C. (2018). Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by- products and yellow tamarillo (Solanum betaceum Cav.). Powder Technology, 339, 702-709. doi: 10.1016/j.powtec.2018.08
dc.relationGarcía-Chacón, J. M., Marín-Loaiza, J. C., & Osorio, C. (2023). Camu Camu (Myrciaria dubia (Kunth) McVaugh): An Amazonian Fruit with Biofunctional Properties–A Review. ACS Omega, 8 (6), 5169–5183. doi: 10.1021/acsomega.2c07245
dc.relationGómez Soto, J. A., Sánchez Toro, Ó. J. (2019). Producción de galactooligosacáridos: alternativa para el aprovechamiento del lactosuero. Una revisión. Ingeniería y Desarrollo, 37(1), 129–158. doi: 10.14482/inde.37.1.637
dc.relationGonzález‐Sarrías, A., Tomás‐Barberán, F. A., García‐Villalba, R. (2020). Structural diversity of polyphenols and distribution in foods. En: Dietary Polyphenols, eds F.A. Tomás-Barberán, A. González-Sarrías and R. García-Villalba. Pp. 1–29. doi: 10.1002/9781119563754.ch1
dc.relationGothai, S., Ganesan, P., Park, S.-Y., Fakurazi, S., Choi, D.-K., Arulselvan, P. (2016). Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients, 8, 461. doi: 10.3390/nu8080461
dc.relationGou, L., Zhan, Y., Lee, J., Li, X., Lü, Z-R., Zhou, H-M., Lu, H., Wang, X-Y., Park, Y.D., Yang, J-M. (2015). Effects of L-malic acid on alpha-glucosidase: inhibition kinetics and computational molecular dynamics simulations. Applied Biochemistry and Biotechnology, 175, 2232–2245. doi: 10.1007/s12010-014-1429-6
dc.relationGranvogl, M., Schieberle, P. (2022). Chapter two-The sensomics approach: a useful tool to unravel the genuine aroma blueprint of foods and aroma changes during food processing. Comprehensive Analytical Chemistry, 96, 41-68. doi: 10.1016/bs.coac.2021.10.002
dc.relationGrigio, M. L.; Chagas, E. A.; Rathinasabapathi, B.; Cardoso Chagas, P.; Vieria da Silva, A. R.; Moreira Sobral, S. T.; Rodrigues de Oliveira, R. (2017). Qualitative evaluation and biocompounds present in different parts of camu-camu (Myrciaria dubia) fruit. African Journal of Food Science, 11, 124−129. doi: 10.5897/AJFS2016.1574
dc.relationGrigio, M.L., de Moura, E.A., Alves Chagas, E., Berlingieri Durigan, M.F., Cardoso Chagas, P., Ferreira de Carvalho, G., Zanchetta, J.J. (2021). Bioactive compounds in and antioxidant activity of camu- camu fruits harvested at different maturation stages during postharvest storage. Acta Scientiarum. Agronomy, 43, e50997. doi: 10.4025/actasciagron.v43i1.50997
dc.relationGrgić, J., Šelo, G., Planinić, M., Tišma, M., Bucić-Kojić, A. (2020). Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants, 9, 923. doi: 10.3390/antiox9100923
dc.relationHernández, M.S., Barrera, J.A. (2010). Camu camu: Instituto Amazónico de Investigaciones Científicas - Sinchi. Consultado el 24 de septiembre de 2022. https://www.sinchi.org.co/files/publicaciones/publicaciones/pdf/Camu%20camu% 20baja.pdf
dc.relationLa República (2021). Colanta, Alpina y Nestlé, las empresas de lácteos y derivados más vendedoras de 2020. Consultado el 22 de octubre de 2022. https://www.larepublica.co/empresas/colanta-alpina-y-nestle-las-empresas-de- lacteos-y-derivados-mas-vendedoras-de-2020-3191078
dc.relationLabuschagne, P. (2018). Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: A review. Food Research International, 107, 227–247. doi: 10.1016/j.foodres.2018.02.026
dc.relationLankatillake, C., Luo, S., Flavel, M. et al. (2021). Screening natural product extracts for potential enzyme inhibitors: protocols, and the standardization of the usage of blanks in α-amylase, α-glucosidase, and lipase assays. Plant Methods, 17, 3. doi: 10.1186/s13007-020-00702-5
dc.relationLeite, K.F.A., Fonteles, T. V., Miguel, T. B.A.R., Silvestre da Silva, G., Sousa de Brito, E., Alves Filho, E. G., Fernandes, F. A. N., Rodrigues, S. (2021). Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Research International, 147, 110479. doi: 10.1016/j.foodres.2021.11
dc.relationLi, J., Wang, B., He, Y., Wen, L., Nan, H., Zheng, F., Liu, H., Wu, M., Zhang, H. (2020). A review of the interaction between anthocyanins and proteins. Food Science and Technology International, 27(5), 470-482. doi:10.1177/1082013220962613
dc.relationLi, X.; Bai, Y., Jin, Z., Svensson, B. (2022). Food-derived non-phenolic -amylase and - glucosidase inhibitors for controlling starch digestion rate and guiding diabetes- friendly recipes. LWT, 153, 112455. doi: 10.1016/j.lwt.2021.112455
dc.relationLima Santos, I., Freire Miranda, L.C., da Cruz Rodrigues, A.M, Meller da Silva, L.H, Amante, E.R. (2022). Camu-camu [Myrciaria dubia (HBK) McVaugh]: A review of properties and proposals of products for integral valorization of raw material. Food Chemistry, 372, 131290. doi: 10.1016/j.foodchem.2021.131290
dc.relationLópez-Fernández, O., Domínguez, R., Pateiro, M., Munekata, P.E.S., Rocchetti, G., Lorenzo, J.M. (2020). Determination of polyphenols using Liquid Chromatography– Tandem Mass Spectrometry Technique (LC–MS/MS): A Review. Antioxidants, 9, 479. doi: 10.3390/antiox9060479
dc.relationMalik, J. A., Ahmed, S., Shinde, M., Almermesh, M. H. S, Alghamdi, S., Hussain, A., Anwar, S. (2022). The impact of COVID-19 on comorbidities: A review of recent updates for combating it. Saudi Journal of Biological Science, 29, 3586-3599. doi: 10.1016/j.sjbs.2022.02.006
dc.relationMattioli, R., Francioso, A., Mosca, L., Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809. doi: 10.3390/molecules25173809
dc.relationMehra, R., Kumar, H., Kumar, N., Ranvir, S., Jana, A., Singh Buttar, H., Telessy, I.G., Godswill Awuchi, C., Odilichukwu, C., Okpalag, R., Korzeniowskag, M., Guiné, R. P. F. (2021). Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. Journal of Functional Foods, 87, 104760. doi: 10.1016/j.jff.2021.104760
dc.relationMinekus, M., Alminger, M., Alvito, P., Balance, S., Bohn, T., Bourlieu, C., et al (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–24. doi: 10.1039/c3fo60702j
dc.relationMinSalud Colombia (2020). Tres de cada 100 colombianos tienen diabetes. Consultado el 25 de septiembre de 2022. https://www.minsalud.gov.co/Paginas/Tres-de-cada-100-colombianos-tienen-diabetes.aspx
dc.relationMiyagusuku-Cruzado, G., Jiménez-Flores, R., Giusti, M.M. (2021). Whey protein addition and its increased light absorption and tinctorial strength of model solutions colored with anthocyanins. Journal of Dairy Science, 104(6), 6449-6462. doi: 10.3168/jds.2020-19690.
dc.relationNeri-Numa, I. A., Soriano Sancho, R. A., Pereira, A. P. A., Pastore, G. M. (2018). Small Brazilian wild fruits: Nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Research International, 103, 345–360. doi: 10.1016/j.foodres.2017.10.053
dc.relationNi, W., Yang, X., Yang, D., Bao, J., Li, R., Xiao, Y., Hou, C., Wang, H., Liu, J., Yang, D., Xu, Y., Cao, Z., Gao, Z. (2020). Role of Angiotensin-Converting Enzyme 2 (ACE-2) in COVID-19. Critical Care, 24(1), 422. doi: 10.1186/s13054-020-03120-0
dc.relationNishanthi, M., Chandrapala, J., Vasiljevic, T. (2017). Properties of whey protein concentrate powders obtained by spray drying of sweet, salty and acid whey under varying storage conditions. Journal of Food Engineering, 214, 137–146. doi: 10.1016/j.jfoodeng.2017.00
dc.relationOMS (2019). The top 10 causes of death. Consultado el 09 de Marzo de 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
dc.relationOzkan, G., Franco, P., De Marcob, I., Xiaoc, J., Capanoglu, E. (2017). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205
dc.relationPeña Hidalgo., M., Espinoza Campos, F.O., Ramirez, M.D., Villacrés-Vallejo, J., Vásquez Torres, D. (2021). Toxic and antidiabetic effect of three Amazonian plants in balb/c mice induced with streptozotocin. UNAP, 9(2), 21 – 32. doi: 10.22386/ca.v9i2.338
dc.relationQuatrin, A., Rampelotto, C., Pauletto, R., Maurer, L. H., Nichelle, S. M., Klein, B., Emanuelli, T. (2020). Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 65, 103714. doi: 10.1016/j.jff.2019.103714
dc.relationRiaz, M., Zia-Ul-Haq, M., Saad, B. (2016a). Introduction to anthocyanins. En: Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. doi: 10.1007/978-3-319-26456-1_2
dc.relationRiaz, M., Zia-Ul-Haq, M., Saad, B. (2016b). Anthocyanins, absorption and metabolism. En: Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. doi: 10.1007/978-3-319-26456-1_5
dc.relationSalvo-Romero E, Alonso-Cotoner C, Pardo-Camacho C, Casado-Bedmar M, Vicario M. (2015). Función barrera intestinal y su implicación en enfermedades digestivas. Revista Española de Enfermería Digestiva, 107, 686-696.
dc.relationShahidi, F., Peng, H. (2018). Bioaccessibility and bioavailability of phenolic compounds. Journal of Food Bioactives, 4, 11–68. doi: 10.31665/JFB.2018.4162
dc.relationSilva da Costa, J., Andrade, W.M.S., de Figueiredo, R.O., Santos, P.V.L., da Silva Freitas, J.J., Setzer, W. N., da Silva, J. K. R., Maia, J. G. S., Figueiredo, P. L. B. (2022). Chemical composition and variability of the volatile components of Myrciaria species growing in the Amazon region. Molecules, 27 (7), 2234. doi: 10.3390/molecules27072234
dc.relationSouza, A., Oliveira, T., Mattietto, R., Nascimento, W., Lopes, A. (2018). Bioactive compounds in the peel of camu-camu genotypes from Embrapa’s active germplasm bank. Food Science of Technololgy, Campinas, 38(1), 67-71. doi: 10.1590/1678-457X.33716
dc.relationSviech, F., Ubbink, J., Prata, A. S. (2021). Analysis of the effect of sugars and organic acids on the ice-melting behavior of pitanga and araza pulp by differential scanning calorimetry (DSC). Thermochimica Acta, 700, 178934. doi: 10.1016/j.tca.2021.178934
dc.relationTarone, A. G., Goupy, P., Ginies, C., Marostica Junior, M. R., Dufour, C. (2021). Advanced characterization of polyphenols from Myrciaria jaboticaba peel and lipid protection in vitro gastrointestinal digestion. Food Chemistry, 359, 129959. doi: 10.1016/j.foodchem.2021.129959
dc.relationTontul, I., Topuz, A. (2017). Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91–102. doi: 10.1016/j.tifs.2017.03.009
dc.relationTundis R.; Loizzo M. R.; Menichini F. (2010). Natural products as -amylase and -glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: An update. Mini-Reviews in Medicinal Chemistry, 10(4), 315-331. doi: 10.2174/138955710791331007
dc.relationVictoria-Campos, C. I., Ornelas-Paz, J. J., Rocha-Guzmán, N. E., Gallegos-Infante J. A., Failla, M. L., Pérez-Martínez, J. D., Rios-Velasco, C., Ibarra-Junquera, V. (2022). Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chemistry, 383, 132451. doi: 10.1016/j.foodchem.2022.132451
dc.relationVinholes, J., Lemos, G., Barbieri, R. L., Franzon, R. C., Vizzotto, M. (2017). In vitro assessment of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga. Food Bioscience, 19, 92–100. doi: 10.1016/j.fbio.2017.06.005
dc.relationYaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, İ., Tanyıldız, S. N., Yaldız, M. C. (2021). The bioaccessibility of water-soluble vitamins: A review. Trends in Food Science & Technology, 109, 552–563. doi: 10.1016/j.tifs.2021.01.056
dc.relationZapata, S. M., Dufour, J.P. (1993). Camu-Camu Myrciaria dubia (HBK) McVaugh: Chemical composition of fruit. Journal of the Science and Food of Agriculture, 61, 349-351. doi: 10.1002/jsfa.2740610310.  
dc.relationAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19-25. doi: 10.1016/j.softx.2015.06.001
dc.relationActis-Goretta, L., Ottaviani, J. I., Keen, C. L., Fraga, C. G. (2003). Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS Letters, 555 (3), 597-600. doi: 10.1016/s0014-5793(03)01355-3
dc.relationAguirre-Neira, J.C., Sedrez dos Reis. M., Rojas Cardozo, M.A., Raz, L., Clement, C.R. (2020). Physical and chemical variability of Camu-camu fruits in cultivated and uncultivated áreas of the Colombian Amazon. Revista Brasileira de Fruticultura, 42, e-545. doi: 10.1590/0100-29452020545
dc.relationAkter, M.S., Oh, S., Eun, J.B., Ahmed, M. (2011). Nutritional compositions and health promoting phytochemicals of camu-camu (Myrciaria dubia) fruit: A review. Food Research International, 44, 1728–1732. doi: 10.1016/j.foodres.2011.03.045
dc.relationAOAC - Association of Official Analytical Chemists. (2015). Official Methods of Analysis. Consultado el 26 de septiembre de 2022. http://www.aoac.org/iMIS15_Prod/AOAC
dc.relationAsgar, M.A. (2013). Anti-diabetic potential of phenolic compounds: A review. International Journal of Food Properties, 16, 91-103. doi: 10.1080/10942912.2011.595864
dc.relationBalisteiro, D.M., de Araujo, R. L., Giacaglia, L. R., Genovese, M. I. (2017). Effect of clarified Brazilian native fruit juices on postprandial glycemia in healthy subjects. Food Research International, 100, 196–203. doi: 10.1016/j.foodres.2017.08.044
dc.relationBento, A. P., Gaulton, A., Hersey, A., Bellis, L. J., Chambers, J., Davies, M., Krüger, F. A., Light, Y., Mak, L., McGlinchey, S., Nowotka, M., Papadatos, G., Santos, R., Overington, J. P. (2014). The ChEMBL bioactivity database: an update. Nucleic Acids Research, 42, D1083–D1090. doi: 10.1093/nar/gkt1031
dc.relationBitencourt-Ferreira, G. & de Azevedo, W.F Jr. (2019). Molegro virtual docker for docking. Methods in Molecular Biology, 2053, 149-167. doi: 10.1007/978-1-4939-9752-7_10
dc.relationBlare, T. & Donovan, J. (2016). Building value chains for indigenous fruits: lessons from camu-camu in Peru. Renewable Agriculture and Food Systems, 33(1), 6–18. doi: 10.1017/s174217051600018
dc.relationBrahmkshatriya, P. P., Brahmkshatriya, P. S. (2013). Terpenes: Chemistry, Biological Role, and Therapeutic Applications. En: Natural Products. (1st ed.). Ramawat, K., Mérillon, JM. (eds). Springer, Berlin, Heidelberg, Germany. doi: 0.1007/978-3-642-22144-6_120
dc.relationBrown, G. D., Bauer, J., Osborn, H. M. I., Kuemmerle, R. (2018). A solution NMR approach to determine the chemical structures of carbohydrates using the hydroxyl groups as starting points. ACS Omega, 3 (12), 17957–17975. doi: 10.1021/acsomega.8b02136
dc.relationCaner, S., Zhang, X., Jiang, J., Chen, H.-M., Nguyen, N.T., Overkleeft, H., Brayer, G.D., Withers, S. G. (2016). Glucosyl epi-cyclophellitol allows mechanism-based inactivation and structural analysis of human pancreatic -amylase. FEBS Letters, 590, 1143-1151. doi: 10.1002/1873-3468.12143
dc.relationCarmo, M. A. V. D., Fidelis, M., Girotto Pressete, C., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, 108551. doi: 10.1016/j.foodres.2019.108551
dc.relationChen, L., Wang, L., Shu, G., Li, J. (2021). Antihypertensive potential of plant foods: research progress and prospect of plant-derived Angiotensin-Converting Enzyme inhibition compounds. Journal of Agricultural and Food Chemistry, 69(18), 5297-5305. doi: 10.1021/acs.jafc.1c02117
dc.relationDojindo (2022). ACE Kit – WST Technical Manual. Consultado el 26 de septiembre de 2022. https://www.dojindo.eu.com/TechnicalManual/Manual_A502.pdf
dc.relationDos Santos Dias, E. B., Vargas Camilo, Y. M., Barboza de Souza, E. R., Ferri, P. H. (2021). Essential oil variability in Eugenia dysenterica fruits. Natural Products Research, 6, 1–4. doi: 10.1080/14786419.2021.1947273
dc.relationElbandrawy, M.M., Sweef, O., Elgamal, D., Mohamed, T.M., EhabTousson, Elgharabawy, R.M. (2022). Ellagic acid regulates hyperglycemic state through modulation of pancreatic IL-6 and TNF- α immunoexpression. Saudi Journal of Biological Sciences, 29, 3871–3880. doi: 10.1016/j.sjbs.2022.03.016
dc.relationEmpereur-Mot, C., Zagury, J-F., Montes, M. (2016). Screening explorer-an interactive tool for the analysis of screening results. Journal of Chemical Information and Modeling, 56(12), 2281-2286. doi: 10.1021/acs.jcim.6b00283
dc.relationEngel, W., Bahr, W., & Schieberle, P. (1999). Solvent assisted flavour evaporation - a new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. European Food Research and Technology, 209, 237–241. doi: 10.1007/s002170050486
dc.relationFeyza, M. S., Selin, S., Ece, A. S. (2022). Fundamentals of molecular docking and comparative analysis of protein–small-molecule docking approaches. En: (Ed.), Molecular Docking - Recent Advances. IntechOpen. doi: 10.5772/intechopen.105815
dc.relationFelkle, D., Jarczynski, M., Zięba, K., Nazimek, K. (2022). The immunomodulatory effects of antihypertensive therapy: A review. Biomedicine & Pharmacotherapy, 153, 113287. doi: 10.1016/j.biopha.2022.113287
dc.relationFranco, M. R. B., Shibamoto, T. (2000). Volatile composition of some Brazilian fruits: Umbu-caja (Spondias citherea), camu-camu (Myrciaria dubia), araça-boi (Eugenia stipitata), and cupuaçu (Theobroma grandiflorum). Journal of Agricultural and Food Chemistry, 48, 1263–1265. doi: 10.1021/jf9900074.
dc.relationGao, C., Tello, E., Peterson, D.G. (2021). Identification of coffee compounds that suppress bitterness of brew. Food Chemistry, 350(6), 129225. doi: 10.1016/j.foodchem.2021.129225.
dc.relationGagnon, J. K., Law, S. M., Brooks III, C. L. (2016). Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. Journal of Computational Chemistry, 37, 753– 762. doi: 10.1002/jcc.24259
dc.relationGarcía-Chacón, J., Forero, D. P., G. Peterson, D., Osorio, C. (2023). Aroma characterization and in vitro antihypertensive activity of Amazonian camu-camu (Myrciaria dubia) fruit. Journal of Food Bioactives, 21. doi: 10.31665/JFB.2023.18339
dc.relationGarcía-Chacón, J. M., Tello, E., Coy-Barrera, E., Peterson, D. G., Osorio, C. (2022). Mono-n-butyl malate-derived compounds from camu-camu (Myrciaria dubia) malic acid: The alkyl-dependent antihyperglycemic-related activity. ACS Omega, 7 (43), 39335-39346. doi: 10.1021/acsomega.2c05551
dc.relationGong, L., Feng, D., Wang, T., Ren, Y., Liu, Y., & Wang, J. (2020). Inhibitors of amylase and  ‐glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Science & Nutrition, 8(12), 6320–6337. doi: 10.1002/fsn3.1987
dc.relationGou, L., Zhan, Y., Lee, J., Li, X., Lü, Z-R., Zhou, H-M., Lu, H., Wang, X-Y., Park, Y.D., Yang, J-M. (2015). Effects of L-malic acid on alpha-glucosidase: inhibition kinetics and computational molecular dynamics simulations. Applied Biochemistry and Biotechnology, 175, 2232–2245. doi: 10.1007/s12010-014-1429-6
dc.relationGronbach, M., Kraußer, L., Broese, T., Oppermann, C., Kragl, U. (2021). Sublimation for enrichment and identification of marker compounds in fruits. Food Analytical Methods, 14, 1087–1098. doi: 10.1007/s12161-020-01954-6.
dc.relationGrosch, W. (1994). Determination of potent odorants in foods by Aroma Extract Dilution Analysis (AEDA) and calculation of odour activity values (OAVs). Flavour Fragrances Journal, 9, 147–158. doi: 10.1002/ffj.2730090403
dc.relationHelmer, A., Slater, N., Smithgall S. (2018). A review of ACE Inhibitors and ARBs in black patients with hypertension. Annals of Pharmacotherapy, 52(11), 1143-1151. doi:10.1177/1060028018779082
dc.relationHess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463-1472. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
dc.relationICONTEC Instituto Colombiano de Normas Técnicas y Certificación (2021). Norma técnica Colombiana, Análisis Sensorial. Metodología. Métodos del perfil del sabor, NTC 3929.
dc.relationIOFI Working Group on Methods of Analysis. (2011). Guidelines for the quantitative gas chromatography of volatile flavouring substances, from the Working Group on Methods of Analysis of the International Organization of the Flavor Industry (IOFI). Flavour Fragrances Journal, 26, 297–299. doi: 10.1002/ffj.2061
dc.relationIsaza, J. H., Ito, H., Yoshida, T. (2004). Oligomeric hidrolizable tannins from Monochaetum multiflorum. Phytochemistry, 65, 359-367. doi: 10.1016/j.phytochem.2003.11.017
dc.relationJennings, W. B (1975). Chemical shift nonequivalence in prochiral groups. Chemistry Review, 3, 3017-322. doi: 10.1021/cr60295a003.
dc.relationJones, G., Willett, P., Glen, R. C., Leach, A. R., Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 3, 727-748. doi: 10.1006/jmbi.1996.0897
dc.relationKanwal, K. M. K., Chigurupati, S., Ali, F., Younus, M., Albubayan, M., Wadood, A., Khan, H., Taha, M., Perveen, S. (2021). Indole-3-acetamides: As potential antihyperglycemic and antioxidant agents; synthesis, in vitro α-amylase inhibitory activity, structure–activity relationship, and in silico studies. ACS Omega, 3, 2264-2275. doi: 10.1021/acsomega.0c05581
dc.relationLaaraj, N., Bouhrim, M., Kharchoufa, L., Tiji, S., Bendaha, H., Addi, M., Drouet, S., Hano, C., Lorenzo, J.M., Bnouham, M., et al. (2022). Phytochemical analysis, α-glucosidase and α-amylase inhibitory activities and acute toxicity studies of extracts from pomegranate (Punica granatum) bark, a valuable agro-industrial by-product. Foods, 11, 1353. doi: 10.3390/ foods11091353
dc.relationLawless, H. T., Heymann, H. (2010). Descriptive Analysis. En: Sensory Evaluation of Food. Food Science Text Series. Springer, New York, NY, pp. 227–257. doi:10.1007/978-1-4419-6488-5_10
dc.relationLeite, K.F.A., Fonteles, T. V., Miguel, T. B.A.R., Silvestre da Silva, G., Sousa de Brito, E., Alves Filho, E. G., Rodrigues, S. (2021). Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility. Food Research International, 147, 110479. doi: 10.1016/j.foodres.2021.11
dc.relationLeffingwell & Associates. (2008). Odor detection thresholds and references. http://www.leffingwell.com/odorthre.htm. Consultado en marzo de 2023.
dc.relationLv, Q.-Q., Cao, J.-J., Liu, R., Chen, H.-Q. (2021). Structural characterization, -amylase and -glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chemistry, 128218. doi: 10.1016/j.foodchem.2020.128218
dc.relationMendoza García, Y., Cruz Ramos, A. L. C., Cardoso Clemente Filha Ferreira de Paula, A., do Nascimento, M. H., Augusti, R., Linhares Bello de Araújo, R., Pinto de Lemos, E. E.,Ferreira Melo, J. O. (2021). Chemical physical characterization and profile of fruit volatile compounds from different accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through polyacrylate fiber. Molecules, 26(17), 5281. doi: 10.3390/molecules26175281
dc.relationMiyashita, T., Koizumi, R., Myoda, T., Sagane, Y., Niwa, K., Watanabe, T., Minami, K. (2018). Data on a single oral dose of camu-camu (Myrciaria dubia) pericarp extract on flow-mediated vasodilation and blood pressure in young adult humans. Data in Brief, 16, 993–999. doi: 10.1016/j.dib.2017.12.009
dc.relationMysinger, M. M., Carchia, M., Irwin, J. J., Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55, 6582-6594. doi: 10.1021/jm300687e
dc.relationPalacio-Rodríguez, K., Lans, I., Cavasotto, C.N., Cossio, P. (2019). Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Scientific Reports, 9, 5142. doi: 0.1038/s41598-019-41594-3
dc.relationPlagemann, I., Krings, U., Berger, R. G., Marostica, M. R. Jr. (2012). Volatile constituents of jabuticaba (Myrciaria jaboticaba (Vell.) O. Berg) fruits. Journal of Essential Oil Research, 24(1), 45-51. doi: 10.1080/10412905.2012.645651
dc.relationRao, S. N., Head, M. S., Kulkarni, A., LaLonde, J. M. (2007). Validation studies of the site-directed docking program LibDock. Journal of Chemical Information and Modeling, 47, 2159-2171. doi: 10.1021/ci6004299
dc.relationRodríguez-Pulido, F.J., Gordillo, B., Heredia, F.J., Gonzalez-Miret, M.L. (2021). CIELAB – Spectral image MATCHING: An app for merging colorimetric and spectral images for grapes and derivatives. Food Control, 15, 108038. doi: 10.1016/j.foodcont.2021.108038
dc.relationRoig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications, 8, 1111. doi: 10.1038/s41467-017-01263-3
dc.relationSantos Silva, J., Damiani, C., da Cunha, M. C., Nunes Carvalho, E. E., de Barros Vilas Boas, E. V. (2019). Volatile profiling of pitanga fruit (Eugenia uniflora L.) at different ripening stages using solid-phase microextraction and mass spectrometry coupled with gas chromatography. Scientia Horticulturae, 250, 366–370. doi: 10.1016/j.scienta.2019.02.076
dc.relationSeeliger, D., de Groot, B.L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24, 417–422. doi: 10.1007/s10822-010-9352-6
dc.relationSchieberle, P. (1995). Recent developments in methods for analysis of flavor compounds and their precursors. En: Characterization of Food: Emerging Methods; Gaonkar, A., (Ed.). Elsevier: Amsterdam, The Netherlands, pp. 403–431.
dc.relationSchieberle, P., Hofmann, T. (2014). Elucidation of the chemosensory code of food by means of a SENSOMICS approach. En: Flavour Science, Proceedings of the XIV Weurman Flavour Research Symposium; Taylor, A.J., Mottram, D.S., Eds.; Context Products Ltd.: Leicestershire, UK, 3–18.
dc.relationSigma-Aldrich Co. (2022a). Technical Bulletin -Amylase Activity Assay Kit. Catalog number MAK009. Consultado el 26 de septiembre de 2022. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/377/793/mak009bul.pdf
dc.relationSigma-Aldrich Co. (2022b).Technical Bulletin -Glucosidase Activity Assay Kit. Catalog number MAK123. Consultado el 26 de septiembre de 2022. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/product/documents/286/096/mak123bul.pdf
dc.relationSilva da Costa, J., Andrade, W. M. S., de Figueiredo, R. O., Santos, P. V. L., da Silva Freitas, J. J., Setzer, W. N., da Silva, J. K. R., Maia, J. G. S., Figueiredo, P. L. B. (2022). Chemical composition and variability of the volatile components of Myrciaria species growing in the Amazon region. Molecules, 27, 2234. doi: 10.3390/molecules27072234
dc.relationSilva de Azevêdo, J. C. S., Fujita, A., de Oliveira, E. L., Genovese, M. I., Correia, R. T. P. (2014). Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Research International, 62, 934–940. DOI: 10.1016/j.foodres.2014.05.0
dc.relationStashenko, E. E., Martínez, J. R. (2010). Algunos aspectos prácticos para la identificación de analitos por cromatografía de gases acoplada a espectrometría de masas. Scientia Chromatographica, 2(1), 28-46.
dc.relationTriballeau, N., Acher, F., Brabet, I., Pin, J-P., Bertrand, H-O. (2005). Virtual screening workflow development guided by the ”receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. Journal of Medicinal Chemistry, 48, 2534-2547. doi: 10.1021/jm049092j
dc.relationWestermaier, Y., Barril, X., Scapozza, L. (2015). Virtual screening: An in silico tool for interlacing the chemical universe with the proteome. Methods, 71, 44-57. doi: 10.1016/j.ymeth.2014.08.001
dc.relationYousefi, M., Shadnoush, M., Khorshidian, N., Mortazavian, A. M. (2020). Insights to potential antihypertensive activity of berry fruits. Phytotherapy Research, 35 (2): 846–863. doi: 10.1002/ptr.6877
dc.relationAlakolanga, A. G. A. W., Savitri Kumar, N., Jayasingh, L., Fujimoto. Y (2015). Antioxidant property and -glucosidase, -amylase and lipase inhibiting activities of Flacourtia inermis fruits: characterization of malic acid as an inhibitor of the enzymes. Journal of Food Science and Technology, 52, 8383–8388. doi: 10.1007/s13197-015-1937-6
dc.relationAlvarado, Y., Muro, C., Illescas, J., Díaz, M.d.C., Riera, F. (2019). Encapsulation of antihypertensive peptides from whey proteins and their releasing in gastrointestinal conditions. Biomolecules, 9(5), 164. doi: 10.3390/biom9050164
dc.relationAMR- Allied Marker Reseach (2022). Yogurt Market Research, 2031. Consultado el 22 de octubre de 2022. https://www.alliedmarketresearch.com/yogurt-market.
dc.relationAnnunziata, G., Jiménez-García, M., Capó, X., Moranta, D., Arnone, A., Tenore, G.C., Sureda, A., Tejada, S. (2020). Microencapsulation as a tool to counteract the typical low bioavailability of polyphenols in the management of diabetes. Food and Chemical Toxicology, 139, 111248. doi: 10.1016/j.fct.2020.111248
dc.relationAnuyahong, T., Chusak, C., Adisakwattana, S. (2020). Incorporation of anthocyanin-rich riceberry rice in yogurts: Effect on physicochemical properties, antioxidant activity and in vitro gastrointestinal digestion. LWT, 129, 109571. doi: 10.1016/j.lwt.2020.109571
dc.relationBechara, N., Flood, V. M. Flood, Gunton, J. E. (2022). A systematic review on the role of vitamin C in tissue healing. Antioxidants, 11(8), 1605. doi: 10.3390/antiox11081605
dc.relationBOE (2022). Código del Sector de Productos Lácteos. Agencia Estatal Boletín Oficial del Estado de España. Consultado el 13 de octubre de 2022. https://www.boe.es/biblioteca_juridica/codigos/codigo.php?id=197&modo=2&nota=0&tab=2
dc.relationCDGC (2021). Cifras de contexto ganadero Caquetá 2021. Comité Departamental de Ganaderos del Caquetá – CDGC. Consultado el 27 de abril de 2023. https://issuu.com/rafaeltorrijos/docs/contexto_2021
dc.relationCorrochano, A. R., Buckin, V., Kelly, P. M., Giblin, L. (2018). Invited review: Whey proteins as antioxidants and promoters of cellular antioxidant pathways. Journal of Dairy Science, 101(6), 4747–4761. doi: 10.3168/jds.2017-13618
dc.relationDa Silva Haas, I. C., Toaldo, I. M., Gomes, T. M., Luna, A. S., de Gois, J. S., Bordignon-Luiz, M. T. (2018). Polyphenolic profile, macro- and microelements in bioaccessible fractions of grape juice sediment using in vitro gastrointestinal simulation. Food Bioscience, 27, 66-74. doi: 10.1016/j.fbio.2018.11.002
dc.relationDurmus, N., Capanoglu, E., Kilic-Akyilmaz, M. (2021). Activity and bioaccessibility of antioxidants in yoghurt enriched with black mulberry as affected by fermentation and stage of fruit addition. International Dairy Journal, 117, 105018. doi: 10.1016/j.idairyj.2021.105018
dc.relationEuromonitor (2022). Drinking Milk Products in Colombia. Consultado el 22 de octubre de 2022. https://www.euromonitor.com/drinking-milk-products-in-colombia/report
dc.relationHofman, D. L., van Buul, V. J., Brouns, F. J. P. H. (2015). Nutrition, health, and regulatory aspects of digestible maltodextrins. Critical Reviews in Food Science and Nutrition, 56(12), 2091–2100. doi: 10.1080/10408398.2014.94041
dc.relationFEV (2022). Federación Española del Vino. El sector en cifras. Consultado el 22 de octubre de 2022. http://www.fev.es/sector-cifras/
dc.relationIgual, M., García-Martínez, E., Camacho, M.M., Martínez-Navarrete N. (2010). Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemistry, 118(2), 291–299. doi: 10.1016/j.foodchem.2009.04.118
dc.relationKhalifa, I., Li, M., Mamet, T., Li, C. (2019). Maltodextrin or gum arabic with whey proteins as wall-material blends increased the stability and physiochemical characteristics of mulberry microparticles. Food Bioscience, 31, 100445. doi: 10.1016/j.fbio.2019.100445
dc.relationLopes Aguiar, J. P., do Amaral Souza, F. das Ch. (2015). Camu-Camu (Myrciaria dubia HBK): Yogurt processing, formulation, and sensory assessment. American Journal of Analytical Chemistry, 6, 377-381. doi: 10.4236/ajac.2015.65036
dc.relationManoj Kumar, C. T., Mondal, S., Prasad, W. G., Rathod, G. S., Raghu, H. V., Kokkiligadda, A. (2022). Evaluation of physicochemical and functional attributes of whey powder incorporated with pomegranate peel extract. Food Chemistry Advances, 1, 100088. doi: 10.1016/j.focha.2022.100088
dc.relationNorkaew, O., Thitisut, P., Mahatheeranont, S., Pawin, B., Sookwong, P., Yodpitak, S., Lungkaphin, A. (2019). Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chemistry, 294, 493-502. doi: 10.1016/j.foodchem.2019.05.086
dc.relationOsorio, C., Acevedo, B., Hillebrand, S., Carriazo, J., Winterhalter, P., Morales, A. L. (2010). Microencapsulation by spray-drying of anthocyanin pigments from corozo (Bactris guineensis) fruit. Journal of Agricultural and Food Chemistry, 58(11), 6977–6985. doi: 10.1021/jf100536g
dc.relationOsorio, C., Carriazo, J. G., Barbosa, H. (2011). Thermal and structural study of guava (Psidium guajava L.) powders obtained by two dehydration methods. Quimica Nova, 34(4), 636-640. doi: 10.1590/S0100-40422011000400016
dc.relationQuatrin, A., Rampelotto, C., Pauletto, R., Maurer, L.H., Nichelle, S. M., Klein, B., Fritzsche Rodrigues, R., Maróstica Junior, M. R.;,de Souza Fonseca, B., Ragagnin de Menezes, C., de Oliveira Mello, R., Rodrigues, E., Caetano Bochi, V., Emanuelli,T. (2020). Bioaccessibility and catabolism of phenolic compounds from jaboticaba (Myrciaria trunciflora) fruit peel during in vitro gastrointestinal digestion and colonic fermentation. Journal of Functional Foods, 65, 103714. doi: 10.1016/j.jff.2019.103714
dc.relationRighi da Rosa, J., Cezimbra Weis, G. C., Bolson Moro, K. I., Sasso Robalo, S., Elias Assmann, C., Picolli da Silva, L., Severo da Rosa, C. (2021). Effect of wall materials and storage temperature on anthocyanin stability of microencapsulated blueberry extract. LWT, 142, 111027. doi: 10.1016/j.lwt.2021.111027
dc.relationRodríguez-Roque, M. J., de Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P., & Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. Journal of Functional Foods, 14, 33–43. doi: 10.1016/j.jff.2015.01.020
dc.relationSaadatkhah, N., Garcia, A. C., Ackermann, S., Leclerc, P., Latifi, M., Samih, S., Chaouki, J. (2019). Experimental methods in chemical engineering: Thermogravimetric Analysis—TGA. The Canadian Journal of Chemical Engineering, 98, 34-43. doi: 10.1002/cjce.23673
dc.relationSantana Andrade, J. K., Chagas Barros, R. G., Corrêa Pereira, U., Gualberto, N. C., Santos de Oliveira, C., Shanmugam, S., Narain, N. (2022). a-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chemistry, 373, 131494. doi: 10.1016/j.foodchem.2021.131494
dc.relationSengul, H., Surek, E., Nilufer-Erdil, D. (2014). Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Research International, 62, 1069–1079. doi: 10.1016/j.foodres.2014.05.055
dc.relationStinco, C. M., Sentandreu, E., Mapelli-Brahm, P., Navarro, J. L., Vicario, I. M., Meléndez-Martínez, A. J. (2020). Influence of high-pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry, 331, 127259. doi: 10.1016/j.foodchem.2020.127259
dc.relationTetrapack (2021). Tendencias de consumo de yogur y lo que significan para los productores. Consultado el 22 de octubre de 2022. https://www.tetrapak.com/es/insights/cases-articles/consumer-yoghurt-trends.
dc.relationUSDA (2019). United States Department of Agriculture. Oranges, raw, all commercial varieties. Consultado el 20 de marzo de 2023. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169097/nutrients
dc.relationVictoria-Campos, C.I., Ornelas-Paz, J. de J., Rocha-Guzmán, N. E., Gallegos-Infante, J.A., Failla, M. L., Pérez-Martínez, J. D.; Rios-Velasco, C., Ibarra-Junquera, V. (2022). Gastrointestinal metabolism and bioaccessibility of selected anthocyanins isolated from commonly consumed fruits. Food Chemistry, 383, 132451. doi: 10.1016/j.foodchem.2022.132451
dc.relationVillacrez, J. L., Carriazo, J. G., Osorio, C. (2013). Microencapsulation of Andes Berry (Rubus glaucus Benth.) aqueous extract by spray drying. Food and Bioprocess Technology, 7(5), 1445–1456. doi: 10.1007/s11947-013-1172-y
dc.relationYadav, K., Bajaj, R.K., Mandal, S., Mann, B. (2020). Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. Journal of Food Science and Technology, 57(2), 426-434. doi: 10.1007/s13197-019-04070-4.
dc.relationYaman, M., Mızrak, Ö. F., Çatak, J., Sargın, H. S. (2019). In vitro bioaccessibility of added folic acid in commercially available baby foods formulated with milk and milk products. Food Science and Biotechnology, 28(6), 1837-1844. doi: 10.1007/s10068-019-00625-5.
dc.relationYaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, İ., Tanyıldız, S. N., et al. (2021). The bioaccessibility of water-soluble vitamins: A review. Trends in Food Science & Technology, 109, 552–563. doi: 10.1016/j.tifs.2021.01.056
dc.relationZambrano, A., Castellar, G., Vallejo, W., Piñeres, I., Cely, M.M., Valencia, J. (2017). Aproximación conceptual al análisis térmico y sus principales aplicaciones, “Conceptual approach to thermal analysis and its main applications”. Prospectiva, 15 (2), 117-125. doi: 10.15665/rp.v15i2.1166
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio de las propiedades biofuncionales del camu-camu (Myrciaria dubia (Kunth) McVaugh) y aplicación en un producto alimenticio
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución