dc.contributorCadena Chamorro, Edith Marleny
dc.contributorSanta Marín, Juan Felipe
dc.contributorIngeniería Agrícola
dc.contributorRendon-Munoz, Yazmin [0000-0003-4417-6772]
dc.contributorhttps://scholar.google.es/citations?user=S43z40cAAAAJ&hl=es
dc.creatorRendón Muñoz, Yazmín
dc.date.accessioned2023-07-31T19:25:09Z
dc.date.accessioned2023-08-25T13:50:09Z
dc.date.available2023-07-31T19:25:09Z
dc.date.available2023-08-25T13:50:09Z
dc.date.created2023-07-31T19:25:09Z
dc.date.issued2023-07-29
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84374
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8427019
dc.description.abstractEl café es uno de los productos insignia de la economía colombiana, contribuyendo en 2021 con el 1.0% al PIB nacional y el 15% al PIB agrícola. Sin embargo, su cadena productiva deja tras de sí diferentes residuos que generan un impacto ambiental negativo en las áreas rurales del país, uno de estos residuos es el mucílago que se genera en grandes cantidades y afecta principalmente fuentes hídricas. En aras de buscar usos alternativos para este residuo, el presente trabajo evaluó su potencial como medio de cultivo en la producción de celulosa bacteriana, polímero de gran valor utilizado en diferentes áreas de la industria. En el desarrollo experimental se utilizó mucílago de café obtenido a través de dos métodos de extracción, fermentación natural y desmucilaginado mecánico, y como medio de cultivo control se usó la formulación HS. Cinco (5) microorganismos productores de celulosa bacteriana se aislaron a partir de vinagre casero de panela, de los cuales el mejor productor de celulosa fue clasificado dentro de la especie Komagataeibacter intermedius. La fermentación con este aislado se llevó a cabo en un sistema batch conservando una relación área superficial/volumen de 0.70 cm-1. De igual forma, se evaluó el efecto de variables operaciones como temperatura e inyección de aire en la generación de celulosa con mucílago de café como medio de cultivo. La mayor producción de celulosa bacteriana se obtuvo con mucílago de fermentación natural (4.20±0.01 g/L), seguido por mucílago de desmucilaginado mecánico (1.69±0.04 g/L) y el medio HS (0.77±0.01 g/L) después de 10 d de fermentación. El seguimiento a la cinética del proceso reveló un decrecimiento abrupto en el pH y oxígeno disuelto en los primeros dos días de fermentación, dando indicios sobre el comportamiento de la bacteria en estos medios. La modificación de variables operacionales como temperatura y adaptación de un sistema de aireación sobre el proceso fermentativo reveló que la temperatura óptima para la producción de celulosa bacteriana es 35 °C y que los sistemas con inyección de aire propician un incremento del 22% en la generación de celulosa. La caracterización de las matrices celulósicas obtenidas a partir del mucílago de café reveló que estas presentan una alta capacidad de retención de agua (>150 gH2O/gcelulosa), alta estabilidad térmica determinada por temperaturas de degradación (>360 °C), resistencia mecánica con un alto módulo de Young (>17 GPa) e índice de cristalinidad (>85%). Lo mencionado anteriormente demuestra que el mucílago puede ser catalogado como un medio cultivo alternativo idóneo en la producción de celulosa bacteriana, ya que genera altos rendimientos y permite obtener celulosas con características promisorias para ser usadas en diferentes aplicaciones. (Texto tomado de la fuente)
dc.description.abstractCoffee is one of the Colombian economy-flagship products, contributing to 1.0% of the national GDP and 15% of the agricultural GDP in 2021. However, coffee supply chain leaves behind different residues that generate a negative environmental impact in the Colombian rural areas. One of these residues is the mucilage, which is generated in large quantities and mainly affects water sources. In order to find alternative uses for this residue, the present work evaluated mucilage potential as a culture medium in the production of bacterial cellulose, a high-value polymer used in different industrial areas. Coffee mucilage obtained by two extraction methods, natural fermentation and mechanical removal, was used throughout this research. HS formulation was also used as control culture medium. Five (5) bacterial cellulose-producing microorganisms were isolated from homemade raw-sugar-cane vinegar, being the best cellulose producer classified into the species Komagataeibacter intermedius. The fermentative process was carried out in a batch system with this isolate, maintaining a surface area/volume ratio of 0.70 cm-1 for 10 d. Modifications in operational variables, such as temperature and aeration system, along with coffee mucilage were also evaluated on cellulose generation. The highest yield of bacterial cellulose was obtained with natural fermentation mucilage (4.20±0.01 g/L), followed by mechanical removal mucilage (1.69±0.04 g/L) and HS medium (0.77±0.01 g/L) after 10 d. A pronounced decrease in pH and dissolved oxygen in the first two days was observed, giving hints about the bacterium behaviour in these media. Changes in operational variables revealed that the optimal temperature to produce bacterial cellulose is 35 °C, and air-input promotes a 22% increase in cellulose generation. The characterization of the cellulosic matrices obtained from coffee mucilage revealed that they have a high-water retention capacity (>150 gH2O/gcellulose), high thermal stability (>360 °C), mechanical resistance with a high Young modulus' (>17 GPa), and high crystallinity index (>85%). The outcomes demonstrate that mucilage can be recognized as a suitable alternative medium since it generates high cellulose yields with promising characteristics.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisherFacultad de Ciencias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationLaReferencia
dc.relationAbidi, W., Torres-Sánchez, L., Siroy, A., & Krasteva, P. V. (2022). Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiology Reviews, 46(2). https://doi.org/10.1093/femsre/fuab051
dc.relationAlbalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253-261. https://doi.org/10.1016/j.carbpol.2013.04.072
dc.relationAlgar, I., Fernandes, S. C. M., Mondragon, G., Castro, C., Garcia-Astrain, C., Gabilondo, N., Retegi, A., & Eceiza, A. (2015). Pineapple agroindustrial residues for the production of high value bacterial cellulose with different morphologies. Journal of Applied Polymer Science, 132(1). https://doi.org/10.1002/app.41237
dc.relationAlmeida, D. M., Prestes, R. A., Fonseca, A. F. da, Woiciechowski, A. L., & Wosiacki, G. (2013). Minerals consumption by Acetobacter xylinum on cultivation medium on coconut water. Brazilian Journal of Microbiology, 44(1), 197-206. https://doi.org/10.1590/S1517-83822013005000012
dc.relationAlves, R. C., Rodrigues, F., Antónia Nunes, M., Vinha, A. F., & Oliveira, M. B. P. P. (2017). State of the art in coffee processing by-products. En Handbook of Coffee Processing By-Products (pp. 1-26). Academic Press. https://doi.org/10.1016/B978-0-12-811290-8.00001-3
dc.relationAmarasekara, A. S., Wang, D., & Grady, T. L. (2020). A comparison of kombucha SCOBY bacterial cellulose purification methods. SN Applied Sciences, 2(2), 240. https://doi.org/10.1007/s42452-020-1982-2
dc.relationAndrés-Barrao, C., Falquet, L., Calderon-Copete, S. P., Descombes, P., Ortega Pérez, R., & Barja, F. (2011). Genome Sequences of the High-Acetic Acid-Resistant Bacteria Gluconacetobacter europaeus LMG 18890 T and G. europaeus LMG 18494 (Reference Strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (Isolated from Vinegar). Journal of Bacteriology, 193(10), 2670-2671. https://doi.org/10.1128/JB.00229-11
dc.relationAndritsou, V., de Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. (2018). Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources. ACS Omega, 3(8), 10365-10373. https://doi.org/10.1021/acsomega.8b01315
dc.relationAnton-Sales, I., Beekmann, U., Laromaine, A., Roig, A., & Kralisch, D. (2019). Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Current Drug Targets, 20(8), 808-822. https://doi.org/10.2174/1389450120666181129092144
dc.relationAOAC. (2012). Official Methods of Analysis of AOAC International. AOAC.
dc.relationAsendorf, S. (2016). U. S. EPA Method 200.7 - Wastewater Analysis for Trace Metals Using an Auto-Dilution System Coupled to the Thermo Scientific iCAP 7000 Plus Series ICP-OES. https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FCMD%2FApplication-Notes%2FAN-43376-ICP-OES-Trace-Metals-Wastewater-AN43376-EN.pdf
dc.relationASTM. (2022). Standard Test Method for Tensile Properties of Plastics (ASTM D638). ASTM. https://www.astm.org/d0638-22.html
dc.relationAvallone, S., Guiraud, J.-P., Guyot, B., Olguin, E., & Brillouet, J.-M. (2000). Polysaccharide Constituents of Coffee-Bean Mucilage. Journal of Food Science, 65(8), 1308-1311. https://doi.org/10.1111/j.1365-2621.2000.tb10602.x
dc.relationAvallone, S., Guiraud, J.-P., Guyot, B., Olguin, E., & Brillouet, J.-M. (2001). Fate of Mucilage Cell Wall Polysaccharides during Coffee Fermentation. Journal of Agricultural and Food Chemistry, 49(11), 5556-5559. https://doi.org/10.1021/jf010510s
dc.relationAvallone, S., Guyot, B., Brillouet, J.-M., Olguin, E., & Guiraud, J.-P. (2001). Microbiological and Biochemical Study of Coffee Fermentation. Current Microbiology, 42(4), 252-256. https://doi.org/10.1007/s002840110213
dc.relationAzeredo, H. M. C., Barud, H., Farinas, C. S., Vasconcellos, V. M., & Claro, A. M. (2019). Bacterial Cellulose as a Raw Material for Food and Food Packaging Applications. En Frontiers in Sustainable Food Systems (Vol. 3). https://doi.org/10.3389/fsufs.2019.00007
dc.relationBae, S., & Shoda, M. (2005). Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnology and Bioengineering, 90(1), 20-28. https://doi.org/10.1002/bit.20325
dc.relationBall, S., Bullock, S., Lloyd, L., Keeley, M., & Ewen, A. (2011). Analysis of carbohydrates, alcohols, and organic acids by ion-exchange chromatography. Agilent Technologies. https://www.agilent.com/cs/library/applications/5990-8801EN%20Hi-Plex%20Compendium.pdf
dc.relationBattestin, V., & Macedo, G. A. (2007). Tannase production by Paecilomyces variotii. Bioresource Technology, 98(9), 1832-1837. https://doi.org/10.1016/J.BIORTECH.2006.06.031
dc.relationBeijerinck, M. L. (1898). Uber die Arten der Essigbakterien. Zentralbl. Parasitenkund. Infektionskr. Hyg. Abt. II, 4, 209-2015.
dc.relationBergey, D. H., & Holt, J. G. (1994). Bergey’s Manual of Determinative Bacteriology (J. G. Holt, Ed.; 7th Editio). Williams & Wilkins. https://books.google.com.co/books?id=jtMLzaa5ONcC
dc.relationBhoite, R. N., Navya, P. N., & Murthy, P. S. (2013). Statistical optimization of bioprocess parameters for enhanced gallic acid production from coffee pulp tannins by penicillium verrucosum. Preparative Biochemistry and Biotechnology, 43(4), 350-363. https://doi.org/10.1080/10826068.2012.737399
dc.relationBio Rad Laboratories. (s. f.). Guide to Aminex HPLC Columns for food and Beverage, Biotechnology, and Bio-Organic Acids. Bio Rad Laboratories, Inc. Recuperado 23 de febrero de 2023, de www.hplc.sk/pdf/Biorad/Guide_to_Aminex_HPLC_columns.pdf
dc.relationBlack, C. S. (2013). Bioconversion of Glycerol to Dihydroxyacetone by immobilized Gluconacetobacter xylinus cells [University of Waikato]. https://hdl.handle.net/10289/7955
dc.relationBlanco Parte, F. G., Santoso, S. P., Chou, C.-C., Verma, V., Wang, H.-T., Ismadji, S., & Cheng, K.-C. (2020). Current progress on the production, modification, and applications of bacterial cellulose. Critical Reviews in Biotechnology, 40(3), 397-414. https://doi.org/10.1080/07388551.2020.1713721
dc.relationBoesch, C., Trček, J., Sievers, M., & Teuber, M. (1998). Acetobacter intermedius, sp. nov. Systematic and Applied Microbiology, 21(2), 220-229. https://doi.org/10.1016/S0723-2020(98)80026-X
dc.relationBonilla-Hermosa, V. A., Duarte, W. F., & Schwan, R. F. (2014). Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresource Technology, 166, 142-150. https://doi.org/10.1016/J.BIORTECH.2014.05.031
dc.relationBrown, A. J. (1886). XLIII- On an Acetic Ferment which form Cellulose. Journal of Chemical Society, Transaction, 49, 432-439. https://doi.org/10.1039/CT8864900432
dc.relationBuldum, G., & Mantalaris, A. (2021). Systematic Understanding of Recent Developments in Bacterial Cellulose Biosynthesis at Genetic, Bioprocess and Product Levels. International Journal of Molecular Sciences, 22(13), 7192. https://doi.org/10.3390/ijms22137192
dc.relationCaicedo, L. A., de Franca, F. P., & López, L. (2001). FACTORES PARA EL ESCALADO DEL PROCESO DE PRODUCCIÓN DE CELULOSA POR FERMENTACIÓN ESTÁTICA. Revista Colombiana de Química, 30(2), 155-162.
dc.relationCappuccino, James. G., & Welsh, C. T. (2016). Microbiology: A Laboratory Manual (Eleventh edition). Pearson.
dc.relationCarreño Pineda, L. D. (2011). Efecto de las Condiciones de Cultivo y Purificación sobre las Propiedades Fisicoquímicas y de Transporte en Membranas de Celulosa Bacteriana. Universidad Nacional de Colombia.
dc.relationCarvajal Herrera, J. J., Aristizábal Torres, I. D., Oliveros Tascón, C. E., & Mejía Montoya, J. W. (2011). Colorimetría del Fruto de Café (Coffea arabica L.) Durante su Desarrollo y Maduración. Revista Facultad Nacional de Agronomía Medellín, 64(2), 6229-6240. http://www.scielo.org.co/pdf/rfnam/v64n2/v64n2a20.pdf
dc.relationCastañeda, M. T. (2019). Estequiometría y cinética del crecimiento microbiano. Universidad Nacional de La Plata. http://sedici.unlp.edu.ar/handle/10915/89651
dc.relationCastillo, M. D. del, Fernandez-Gomez, B., Martinez-Saez, N., Iriondo-DeHond, A., & Mesa, M. D. (2019). Chapter 12. Coffee By-products. En Coffee (pp. 309-334). Royal Society of Chemistry. https://doi.org/10.1039/9781782622437-00309
dc.relationCastro, C., Cleenwerck, I., Trček, J., Zuluaga, R., de Vos, P., Caro, G., Aguirre, R., Putaux, J.-L., & Gañán, P. (2013). Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_3), 1119-1125. https://doi.org/10.1099/ijs.0.043414-0
dc.relationCastro, C., Zuluaga, R., Álvarez, C., Putaux, J.-L., Caro, G., Rojas, O. J., Mondragon, I., & Gañán, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydrate Polymers, 89(4), 1033-1037. https://doi.org/10.1016/j.carbpol.2012.03.045
dc.relationCazón, P., & Vázquez, M. (2021). Improving bacterial cellulose films by ex-situ and in-situ modifications: A review. Food Hydrocolloids, 113, 106514. https://doi.org/10.1016/j.foodhyd.2020.106514
dc.relationChao, Y., Ishida, T., Sugano, Y., & Shoda, M. (2000). Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnology and Bioengineering, 68(3), 345-352. https://doi.org/10.1002/(SICI)1097-0290(20000505)68:3<345::AID-BIT13>3.0.CO;2-M
dc.relationCharrier, A., & Berthaud, J. (1985). Botanical Classification of Coffee. En M. N. Clifford & K. C. Willson (Eds.), Coffee: Botany, Biochemistry and Production of Beans and Beverage (pp. 13-47). Springer US. https://doi.org/10.1007/978-1-4615-6657-1_2
dc.relationChen, T.-Y., Santoso, S. P., & Lin, S.-P. (2022). Using Formic Acid to Promote Bacterial Cellulose Production and Analysis of Its Material Properties for Food Packaging Applications. Fermentation, 8(11), 608. https://doi.org/10.3390/fermentation8110608
dc.relationClarke, R. J. (1985). Green Coffee Processing. En M. N. Clifford & K. C. Willson (Eds.), Coffee: Botany, Biochemistry and Production of Beans and Beverage (pp. 230-250). Springer US. https://doi.org/10.1007/978-1-4615-6657-1_10
dc.relationClavijo, S. (2017). Panorama cafetero 2017 - 2018. La Republica. https://www.larepublica.co/analisis/sergio-clavijo-500041/panorama-cafetero-2017-2018-2571638
dc.relationCleenwerck, I., de Vos, P., & de Vuyst, L. (2010). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60(10), 2277-2283. https://doi.org/10.1099/ijs.0.018465-0
dc.relationCook, K. E., & Colvin, J. R. (1980). Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium. Current Microbiology, 3(4), 203-205. https://doi.org/10.1007/BF02602449
dc.relationCórdoba Castro, N. M., & Guerrero Fajardo, J. esteban. (2016). CARACTERIZACIÓN DE LOS PROCESOS TRADICIONALES DE FERMENTACIÓN DE CAFÉ EN EL DEPARTAMENTO DE NARIÑO. Biotecnoloía en el Sector Agropecuario y Agroindustrial, 14(2), 75. https://doi.org/10.18684/BSAA(14)75-83 Davis, J. R. (2004). Tensile Testing (2.a ed.). ASM International.
dc.relationde Jesus, S. S., Moreira Neto, J., & Maciel Filho, R. (2017). Hydrodynamics and mass transfer in bubble column, conventional airlift, stirred airlift and stirred tank bioreactors, using viscous fluid: A comparative study. Biochemical Engineering Journal, 118, 70-81. https://doi.org/10.1016/j.bej.2016.11.019
dc.relationDeshavath, N. N., Mukherjee, G., Goud, V. V., Veeranki, V. D., & Sastri, C. V. (2020). Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules, 156, 180-185. https://doi.org/10.1016/j.ijbiomac.2020.04.045
dc.relationDobre, T., Stoica, A., Parvulescu, O. C., Stroescu, M., & Iavorschi, G. (2008). Factors Influence on Bacterial Cellulose Growth in Static Reactors. REVISTA DE CHIMIE-BUCHAREST-ORIGINAL EDITION, 59(5), 591.
dc.relationDoran, P. (2013). Bioprocess Engineering Principles (Second). Elsevier. https://doi.org/10.1016/C2009-0-22348-8
dc.relationDourado, F., Ryngajllo, M., Jedrzejczak-Krzepkowska, M., Bielecki, S., & Gama, M. (2016). Taxonomic Review and Microbial Ecology in Bacterial NanoCellulose Fermentation. En Bacterial Nanocellulose (pp. 1-17). Elsevier. https://doi.org/10.1016/B978-0-444-63458-0.00001-9
dc.relationDufresne, A. (2012). Cellulose and potential reinforcement. En Nanocellulose (pp. 1-42). De Gruyter.
dc.relationDumitriu, S. (2005). Polysaccharides (2.a ed.). Marcel Dekker.
dc.relationebatco. (s. f.). SIMULTANEOUS THERMAL ANALYSIS (STA). Recuperado 9 de diciembre de 2022, de https://www.ebatco.com/laboratory-services/chemical/simultaneous-thermal-analysis-sta/
dc.relationElhalis, H., Cox, J., & Zhao, J. (2023). Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research, 3(1), 100253. https://doi.org/10.1016/j.afres.2022.100253
dc.relationExeter Analytical. (s. f.). 232 – Theory of Operation CE440 Elemental Analyser. Exeter Analytical. Recuperado 23 de febrero de 2023, de https://www.exeteranalytical.co.uk/application-notes/
dc.relationFederación Nacional de Cafeteros. (2004a). Beneficio del café 1: Despulpado, Remoción de mucílago y Lavado. En Cartilla cafetera (Número 20, pp. 151-172). Centro Nacional de Investigaciones de Café (Cenicafé). https://www.cenicafe.org/es/index.php/nuestras_publicaciones/cartillas/publicaciones_cartilla_cafetera_cap._20._beneficio_del_cafe._1._despulpado
dc.relationFederación Nacional de Cafeteros. (2004b). Beneficio del café 2: Secado del café pergamino. En Cartilla Cafetera (pp. 174-190). https://www.cenicafe.org/es/index.php/nuestras_publicaciones/cartillas/publicaciones_cartilla_cafetera_cap._20._beneficio_del_cafe._2._secado_del
dc.relationFederación Nacional de Cafeteros. (2017). FNC en Cifras. 1-5. https://federaciondecafeteros.org/static/files/FNCCIFRAS2017.pdf
dc.relationFederación Nacional de Cafeteros. (2023). Precios, área y producción del café. https://federaciondecafeteros.org/app/uploads/2020/01/Precios-area-y-produccion-de-cafe.xlsx
dc.relationFernandes Diniz, J. M. B., Gil, M. H., & Castro, J. A. A. M. (2004). Hornification?its origin and interpretation in wood pulps. Wood Science and Technology, 37(6), 489-494. https://doi.org/10.1007/s00226-003-0216-2
dc.relationFernandes, I. de A. A., Pedro, A. C., Ribeiro, V. R., Bortolini, D. G., Ozaki, M. S. C., Maciel, G. M., & Haminiuk, C. W. I. (2020). Bacterial cellulose: From production optimization to new applications. International Journal of Biological Macromolecules, 164, 2598-2611. https://doi.org/10.1016/j.ijbiomac.2020.07.255
dc.relationFernández, J., Morena, A. G., Valenzuela, S. V., Pastor, F. I. J., Díaz, P., & Martínez, J. (2019). Microbial Cellulose from a Komagataeibacter intermedius Strain Isolated from Commercial Wine Vinegar. Journal of Polymers and the Environment, 27(5), 956-967. https://doi.org/10.1007/s10924-019-01403-4
dc.relationFlórez García, I. C. (2015). PRODUCCIÓN DE CELULOSA BACTERIANA A PARTIR DE PROCESOS FERMENTATIVOS UTILIZANDO MUCÍLAGO DE CAFÉ COMO FUENTE DE CARBONO. Universidad Industrial de Santander.
dc.relationFlorez R, C. P., & Arias S, J. C. (2017). Guía para la caracterización de las variedades de café: Claves para su identificación. Avances Técnicos Cenicafé, 476, 1-12. https://www.cenicafe.org/es/index.php/nuestras_publicaciones/avances_tecnicos/avance_tecnico_0476
dc.relationGaviria González, N. (2021, diciembre 15). Con precios récord, el café volvió a tomar las riendas de la economía del país en 2021. AGRONEGOCIOS. https://www.agronegocios.co/agricultura/con-precios-record-el-cafe-volvio-a-tomar-las-riendas-de-la-economia-del-pais-en-2021-3275453
dc.relationGea, S., Reynolds, C. T., Roohpour, N., Wirjosentono, B., Soykeabkaew, N., Bilotti, E., & Peijs, T. (2011). Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Bioresource Technology, 102(19), 9105-9110. https://doi.org/10.1016/j.biortech.2011.04.077
dc.relationGeorgiev, Y. N., Paulsen, B. S., Kiyohara, H., Ciz, M., Ognyanov, M. H., Vasicek, O., Rise, F., Denev, P. N., Lojek, A., Batsalova, T. G., Dzhambazov, B. M., Yamada, H., Lund, R., Barsett, H., Krastanov, A. I., Yanakieva, I. Z., & Kratchanova, M. G. (2017). Tilia tomentosa pectins exhibit dual mode of action on phagocytes as β-glucuronic acid monomers are abundant in their rhamnogalacturonans I. Carbohydrate Polymers, 175, 178-191. https://doi.org/10.1016/j.carbpol.2017.07.073
dc.relationGerard, L. M. (2015). Caracterización de bacterias del ácido acético destinadas a la producción de vinagres de frutas [Universitat Politècnica de València]. https://doi.org/10.4995/Thesis/10251/59401
dc.relationGhose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. https://doi.org/10.1351/pac198759020257
dc.relationGomes, R. J., Borges, M. de F., Rosa, M. de F., Castro-Gómez, R. J. H., & Spinosa, W. A. (2018). Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technology and Biotechnology, 56(2). https://doi.org/10.17113/ftb.56.02.18.5593
dc.relationGörke, B., & Stülke, J. (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nature Reviews Microbiology, 6(8), 613-624. https://doi.org/10.1038/nrmicro1932
dc.relationGrupo de Estudios Económicos, & Superintendencia de Industria y Comercio. (2012). Estudios de Mercado: Estudio sobre el sector del Café en Colombia. En Superintendencia de Industria y Comercio (Número 5). Superintendencia de Industria y Comercio.
dc.relationHaile, M., & Kang, W. H. (2019a). The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. Journal of Food Quality, 2019, 1-6. https://doi.org/10.1155/2019/4836709
dc.relationHaile, M., & Kang, W. H. (2019b). Isolation, Identification, and Characterization of Pectinolytic Yeasts for Starter Culture in Coffee Fermentation. Microorganisms, 7(10), 401. https://doi.org/10.3390/microorganisms7100401
dc.relationHanna Instruments Inc. (s. f.). Manual de Instrucciones - HI98193 Medidor de oxígeno disuelto DBO/OUR/SOUR (pp. 1-64). Hanna Instruments Inc. Recuperado 2 de febrero de 2023, de https://cdn.hannacolombia.com/hannacdn/support/manual/2019/05/Manual_HI98193.pdf
dc.relationHaque, Md. A., Timilsena, Y. P., & Adhikari, B. (2016). Food Proteins, Structure, and Function. En Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03057-2
dc.relationHernández, M. A., Rodríguez Susa, M., & Andres, Y. (2014). Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresource Technology, 168, 112-118. https://doi.org/10.1016/j.biortech.2014.02.101
dc.relationHestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352. https://doi.org/10.1042/bj0580345
dc.relationHindorf, H., & Omondi, C. O. (2011). A review of three major fungal diseases of Coffea arabica L. in the rainforests of Ethiopia and progress in breeding for resistance in Kenya. Journal of Advanced Research, 2(2), 109-120. https://doi.org/10.1016/j.jare.2010.08.006
dc.relationHong, F., Guo, X., Zhang, S., Han, S., Yang, G., & Jönsson, L. J. (2012). Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technology, 104, 503-508. https://doi.org/10.1016/j.biortech.2011.11.028
dc.relationInternational Trade Centre. (2012). The Coffee Exporter’s Guide (3rd Editio). www.intracen.org
dc.relationIslam, M. U., Ullah, M. W., Khan, S., Shah, N., & Park, J. K. (2017). Strategies for cost-effective and enhanced production of bacterial cellulose. International Journal of Biological Macromolecules, 102, 1166-1173. https://doi.org/10.1016/j.ijbiomac.2017.04.110
dc.relationJacek, P., Dourado, F., Gama, M., & Bielecki, S. (2019). Molecular aspects of bacterial nanocellulose biosynthesis. Microbial Biotechnology, 12(4), 633-649. https://doi.org/10.1111/1751-7915.13386
dc.relationJackels, S. C., & Jackels, C. F. (2005). Characterization of the Coffee Mucilage Fermentation Process Using Chemical Indicators: A Field Study in Nicaragua. Journal of Food Science, 70(5), C321-C325. https://doi.org/10.1111/j.1365-2621.2005.tb09960.x
dc.relationJain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications, 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9
dc.relationJalili Tabaii, M., & Emtiazi, G. (2016). Comparison of Bacterial Cellulose Production among Different Strains and Fermented Media. Applied Food Biotechnology, 3(1), 35-41. https://doi.org/https://doi.org/10.22037/afb.v3i1.10582
dc.relationJang, W. D., Kim, T. Y., Kim, H. U., Shim, W. Y., Ryu, J. Y., Park, J. H., & Lee, S. Y. (2019). Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnology and Bioengineering, 116(12), 3372-3381. https://doi.org/10.1002/bit.27150
dc.relationJozala, A. F., de Lencastre-Novaes, L. C., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., Pessoa-Jr, A., Grotto, D., Gerenutti, M., & Chaud, M. V. (2016). Bacterial nanocellulose production and application: a 10-year overview. Applied Microbiology and Biotechnology, 100(5), 2063-2072. https://doi.org/10.1007/s00253-015-7243-4
dc.relationJozala, A. F., Pértile, R. A. N., dos Santos, C. A., de Carvalho Santos-Ebinuma, V., Seckler, M. M., Gama, F. M., & Pessoa, A. (2015). Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Applied Microbiology and Biotechnology, 99(3), 1181-1190. https://doi.org/10.1007/s00253-014-6232-3
dc.relationKadier, A., Ilyas, R. A., Huzaifah, M. R. M., Harihastuti, N., Sapuan, S. M., Harussani, M. M., Azlin, M. N. M., Yuliasni, R., Ibrahim, R., Atikah, N., Wang, J., Chandrasekhar, K., Islam, A., Sharma, S., Punia, S., Rajasekar, A., Asyraf, M. R. M., Ishak, M. R., & Puglia, D. (2021). Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers, 13(19), 3365. https://doi.org/10.3390/polym13193365
dc.relationKC, Y., Subba, R., Shiwakoti, L. D., Dhungana, P. K., Bajagain, R., Chaudhary, D. K., Pant, B. R., Bajgai, T. R., Lamichhane, J., Timilsina, S., Upadhyaya, J., & Dahal, R. H. (2021). Utilizing Coffee Pulp and Mucilage for Producing Alcohol-Based Beverage. Fermentation, 7(2), 53. https://doi.org/10.3390/fermentation7020053
dc.relationKhenblouche, A., Bechki, D., Gouamid, M., Charradi, K., Segni, L., Hadjadj, M., & Boughali, S. (2019). Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros, 29(1), 1-8. https://doi.org/10.1590/0104-1428.05218
dc.relationKim, S. H., Lee, C. M., & Kafle, K. (2013). Characterization of crystalline cellulose in biomass: Basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean Journal of Chemical Engineering, 30(12), 2127-2141. https://doi.org/10.1007/s11814-013-0162-0
dc.relationKlemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, 44(22), 3358-3393. https://doi.org/10.1002/anie.200460587
dc.relationKomagata, K., Iino, T., & Yamada, Y. (2014). The Family Acetobacteraceae. En The Prokaryotes (pp. 3-78). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_396
dc.relationKrahulec, S., Petschacher, B., Wallner, M., Longus, K., Klimacek, M., & Nidetzky, B. (2010). Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microbial Cell Factories, 9(1), 16. https://doi.org/10.1186/1475-2859-9-16
dc.relationLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923
dc.relationLee, C. M., Gu, J., Kafle, K., Catchmark, J., & Kim, S. H. (2015). Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydrate Polymers, 133, 270-276. https://doi.org/10.1016/j.carbpol.2015.06.091
dc.relationLee, K. Y., Buldum, G., Mantalaris, A., & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10-32. https://doi.org/10.1002/mabi.201300298
dc.relationLeón, J. (2000). Botánica de los cultivos tropicales. Editorial Agroamérica, Instituto Interamericano de Cooperación para la Agricultura. https://books.google.com.co/books?id=NBtu79LJ4h4C
dc.relationLey, J. de, & Frateur, J. (1974). Genus Acetobacter Beijerinck 1898. En R. E. Buchanan & N. E. Gibbons (Eds.), Bergey’s Manual of Determinative Bacteriology (eigth, Vol. 215, pp. 276-278). The Williams & Wilkins Co.
dc.relationLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
dc.relationLi, Z., Wang, L., Hua, J., Jia, S., Zhang, J., & Liu, H. (2015). Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydrate Polymers, 120, 115-119. https://doi.org/10.1016/j.carbpol.2014.11.061
dc.relationLisdiyanti, P., Katsura, K., Potacharoen, W., Navarro, R. R., Yamada, Y., Uchimura, T., & Komagata, K. (2003). Diversity of Acetic Acid Bacteria in Indonesia, Thailand, and the Philippines. Microbiology and Culture Collections, 19(2), 91-99.
dc.relationLiu, M., Liu, L., Jia, S., Li, S., Zou, Y., & Zhong, C. (2018). Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-24559-w
dc.relationLiu, N., Santala, S., & Stephanopoulos, G. (2020). Mixed carbon substrates: a necessary nuisance or a missed opportunity? Current Opinion in Biotechnology, 62, 15-21. https://doi.org/10.1016/j.copbio.2019.07.003
dc.relationMarín L, S. M., Arcila P, J., Montoya R, E. C., & Oliveros T, C. E. (2003). Cambios físicos y químicos durante la maduración del fruto de café (Coffea Arabica L. var Colombia). Cenicafé, 54(3), 208-225.
dc.relationMazhar, U. I., A, J. H. H., Shah, N., & Park, J. kon. (2010). Effect of glucuronic acid monomers on the production of bacterial cellulose. 한국생물공학회 학술대회, 276. https://www.earticle.net/Article/A129678
dc.relationMendes Ferrão, J. E. (2009). O café: a bebida negra dos sonhos claros. Chaves Ferreira Publicações. https://books.google.com.co/books?id=zuO6ZwEACAAJ
dc.relationMeza-Contreras, J. C., Manriquez-Gonzalez, R., Gutiérrez-Ortega, J. A., & Gonzalez-Garcia, Y. (2018). XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydrate Research, 461, 51-59. https://doi.org/10.1016/j.carres.2018.03.005
dc.relationMeza-Contreras, J. C., Manriquez-Gonzalez, R., Gutiérrez-Ortega, J. A., & Gonzalez-Garcia, Y. (2018). XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydrate Research, 461, 51-59. https://doi.org/10.1016/j.carres.2018.03.005
dc.relationModi, A., Vai, S., Caramelli, D., & Lari, M. (2021). The Illumina Sequencing Protocol and the NovaSeq 6000 System (pp. 15-42). https://doi.org/10.1007/978-1-0716-1099-2_2
dc.relationMohite, B. v., & Patil, S. v. (2014). A novel biomaterial: bacterial cellulose and its new era applications. Biotechnology and Applied Biochemistry, 61(2), 101-110. https://doi.org/10.1002/bab.1148
dc.relationMolina Ramírez, C. A. (2018). Escalado de la producción de nanocelulosa bacteriana empleando la bacteria K. medellinensis y como sustrato residuos agroindustriales procedentes del departamento del Magdalena- Colombia [Universidad Pontificia Bolivariana]. http://hdl.handle.net/20.500.11912/4466
dc.relationMontgomery, D. C. (2019). Design and Analysis of Experiments. Wiley.
dc.relationMontilla, J., Arcila, J., Aristizábal, M., Montoya, E., Puerta, G., Oliveros, C., & Cadena, G. (2008). Propriedades físicas y factores de conversión del café en el proceso de beneficio. Avances Técnicos Cenicafé, 370, 1-8.
dc.relationMoreno Cárdenas, E. L., & Zapata Zapata, A. D. (2019). Biohydrogen production by co-digestion of fruits and vegetable waste and coffee mucilage. Revista Facultad Nacional de Agronomia Medellin, 72(3), 9007-9018. https://doi.org/10.15446/rfnam.v72n3.73140
dc.relationMuñoz Moreno, D. F., & Noguera Ortiz, M. (2016). Evaluación de las propiedades físicas y factores de conversión de café variedad Castillo y Colombia (Coffea arabica L.) durante el proceso de beneficio y trilla, a diferentes alturas sobre el nivel del mar en fincas cafeteras del municipio de Colón, Departamento de Nariño [Universidad Nacional Abierta y a Distancia]. https://repository.unad.edu.co/handle/10596/12141
dc.relationMurillo, B., & Bressani, R. M. (1975). Pulpa y pergamino de café, 10: cambios en la composición química del pergamino de café por efecto de diferentes tratamientos alcalinosCoffee pulp and coffee hulls,. Turrialba (IICA) v. 25 (2) p. 179-182. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=ORTON.xis&method=post&formato=2&cantidad=1&expresion=mfn=037925
dc.relationMurthy, P. S., & Madhava Naidu, M. (2012). Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, 66, 45-58. https://doi.org/10.1016/j.resconrec.2012.06.005
dc.relationMurthy, P. S., Madhava Naidu, M., & Srinivas, P. (2009). Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology & Biotechnology, 84(8), 1246-1249. https://doi.org/10.1002/jctb.2142
dc.relationNeu, A.-K., Pleissner, D., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure L(+)-lactic acid production. Bioresource Technology, 211, 398-405. https://doi.org/10.1016/j.biortech.2016.03.122
dc.relationNguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268-274. https://doi.org/10.1093/molbev/msu300
dc.relationNishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., & Mitsuhashi, S. (1990). The structure and mechanical properties of sheets prepared from bacterial cellulose - Part 2. Journal of Materials Science, 25(6), 2997-3001. https://doi.org/10.1007/BF00584917
dc.relationOcampo-López, O. L., & Alvarez-Herrera, L. M. (2017). Tendencia de la producción y el consumo del café en Colombia. Apuntes del CENES, 36(64), 139-165.
dc.relationO’Dell, J. W. (1996). The determination of chemical oxygen demand by semi-automated colorimetry. United States Environmental Protection Agency.
dc.relationOgino, H., Azuma, Y., Hosoyama, A., Nakazawa, H., Matsutani, M., Hasegawa, A., Otsuyama, K., Matsushita, K., Fujita, N., & Shirai, M. (2011). Complete Genome Sequence of NBRC 3288, a Unique Cellulose-Nonproducing Strain of Gluconacetobacter xylinus Isolated from Vinegar. Journal of Bacteriology, 193(24), 6997-6998. https://doi.org/10.1128/JB.06158-11
dc.relationOliveira, R. L., Vieira, J. G., Barud, H. S., Assunção, R. M. N., Rodrigues Filho, G., Ribeiro, S. J. L., & Messadeqq, Y. (2015). Synthesis and Characterization of Methylcellulose Produced from Bacterial Cellulose under Heterogeneous Condition. Journal of the Brazilian Chemical Society. https://doi.org/10.5935/0103-5053.20150163
dc.relationOrrego, D., Zapata-Zapata, A. D., & Kim, D. (2018). Optimization and scale-up of coffee mucilage fermentation for ethanol production. Energies, 11(4). https://doi.org/10.3390/en11040786
dc.relationPa’e, N., Salehudin, M. H., Hassan, N. D., Marsin, A. M., & Muhamad, I. I. (2018). Thermal Behavior of Bacterial Cellulose Based Hydrogels with Other Composites and Related Instrumental Analysis (pp. 1-25). https://doi.org/10.1007/978-3-319-76573-0_26-1
dc.relationPark, S., Baker, J. O., Himmel, M. E., Parilla, P. A., & Johnson, D. K. (2010). Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels, 3(1), 10. https://doi.org/10.1186/1754-6834-3-10
dc.relationPigaleva, M. A., Bulat, M. v., Gromovykh, T. I., Gavryushina, I. A., Lutsenko, S. v., Gallyamov, M. O., Novikov, I. v., Buyanovskaya, A. G., & Kiselyova, O. I. (2019). A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media? The Journal of Supercritical Fluids, 147, 59-69. https://doi.org/10.1016/j.supflu.2019.02.009
dc.relationPleissner, D., Neu, A. K., Mehlmann, K., Schneider, R., Puerta-Quintero, G. I., & Venus, J. (2016). Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167-173. https://doi.org/10.1016/j.biortech.2016.06.078
dc.relationPoletto, M., Pistor, V., & Zattera, J. A. (2013). Structural Characteristics and Thermal Properties of Native Cellulose. En Cellulose - Fundamental Aspects. InTech. https://doi.org/10.5772/50452
dc.relationPuerta, G. I., & Ríos, S. (2011). Composición química del mucilago de café según el tiempo de fermentación y refrigeración. Cenicafé, 62(2), 23-40. https://biblioteca.cenicafe.org/handle/10778/478
dc.relationPuerta-Quintero, G. I., Marín M, J., & Osorio B, G. A. (2012). MICROBIOLOGÍA DE LA FERMENTACIÓN DEL MUCÍLAGO DE CAFÉ SEGÚN SU MADUREZ Y SELECCIÓN. Revista Cenicafé, 63(2), 58-78.
dc.relationPuerta-Quintero, G. I., & Ríos-Arias, S. (2011). Composición química del mucílago de café, según el tiempo de fermentación y refrigerazión. Cenicafé, 62(2), 23-40. http://www.cenicafe.org/es/documents/2.pdf
dc.relationQi, G.-X., Luo, M.-T., Huang, C., Guo, H.-J., Chen, X.-F., Xiong, L., Wang, B., Lin, X.-Q., Peng, F., & Chen, X.-D. (2017). Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. Journal of Applied Polymer Science, 134(28), 45066. https://doi.org/10.1002/app.45066
dc.relationQiagen. (2020). DNeasy® PowerLyzer® PowerSoil® Kit Handbook. Qiagen. https://www.qiagen.com/us/resources/resourcedetail?id=329362e4-03e6-4ae1-9e4e-bbce41abe4b7&lang=en
dc.relationQiu, K., & Netravali, A. N. (2014a). «Green» composites based on bacterial cellulose produced using novel low cost carbon source and soy protein resin. En W. V. Gutowski & H. Dodiuk (Eds.), Recent Advances in Adhesion Science and Technology in Honor of Dr. Kash Mittal (pp. 193-208). CRC Press. http://www.crcnetbase.com/doi/abs/10.1201/b16347-15
dc.relationQiu, K., & Netravali, A. N. (2014b). A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polymer Reviews, 54(4), 598-626. https://doi.org/10.1080/15583724.2014.896018
dc.relationQuintero, L., & Rosales, M. (2014). El mercado mundial del café: tendencias recientes, estructura y estrategias de competitividad. Visión Gerencial, 13(2), 291-307.
dc.relationRadotić, K., & Mićić, M. (2016). Methods for Extraction and Purification of Lignin and Cellulose from Plant Tissues (pp. 365-376). https://doi.org/10.1007/978-1-4939-3185-9_26
dc.relationRaghavendran, V., Asare, E., & Roy, I. (2020). Bacterial cellulose: Biosynthesis, production, and applications. En Advances in Microbial Physiology (Vol. 77, pp. 89-138). Elsevier. https://doi.org/10.1016/bs.ampbs.2020.07.002
dc.relationRaina, V., Nayak, T., Ray, L., Kumari, K., & Suar, M. (2019). A Polyphasic Taxonomic Approach for Designation and Description of Novel Microbial Species. En Microbial Diversity in the Genomic Era (pp. 137-152). Elsevier. https://doi.org/10.1016/B978-0-12-814849-5.00009-5
dc.relationRamírez Gómez, C. A., Oliveros T, C. E., & Sanz U, J. R. (2015). Manejo De Lixiviados Y Aguas De Lavado En El Proceso De Beneficio Húmedo Del Café. Revista Cenicafé, 66(1), 46-60. https://biblioteca.cenicafe.org/handle/10778/608
dc.relationRani, M. U., & Appaiah, K. A. A. (2013). Production of bacterial cellulose by Gluconacetobacter hansenii UAC09 using coffee cherry husk. Journal of Food Science and Technology, 50(4), 755-762. https://doi.org/10.1007/s13197-011-0401-5
dc.relationReichembach, L. H., & de Oliveira Petkowicz, C. L. (2020). Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydrate Polymers, 245, 116473. https://doi.org/10.1016/j.carbpol.2020.116473
dc.relationReimer, L. C., Sardà Carbasse, J., Koblitz, J., Ebeling, C., Podstawka, A., & Overmann, J. (2022). Bac Dive in 2022: the knowledge base for standardized bacterial and archaeal data. Nucleic Acids Research, 50(D1), D741-D746. https://doi.org/10.1093/nar/gkab961
dc.relationRemoroza, C., Cord-Landwehr, S., Leijdekkers, A. G. M., Moerschbacher, B. M., Schols, H. A., & Gruppen, H. (2012). Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydrate Polymers, 90(1), 41-48. https://doi.org/10.1016/j.carbpol.2012.04.058
dc.relationRenard, C. M. G. C., Crepeau, M.-J., & Thibault, J.-F. (1999). Glucuronic acid directly linked to galacturonic acid in the rhamnogalacturonan backbone of beet pectins. European Journal of Biochemistry, 266(2), 566-574. https://doi.org/10.1046/j.1432-1327.1999.00896.x
dc.relationResolución 631, 2015 (2015). https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/
dc.relationRivers, D. B., Gracheck, S. J., Woodford, L. C., & Emert, G. H. (1984). Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. Biotechnology and Bioengineering, 26(7), 800-802. https://doi.org/10.1002/bit.260260727
dc.relationRodríguez, N., Sanz, J., Oliveros, C., & Ramírez, C. (2015). Beneficio del café en Colombia. Centro Nacional de Investigaciones en café (CENICAFE).
dc.relationRodríguez-Valencia, N., & Zambrano Franco, D. A. (2010). Los subproductos del café: fuente de energía renovable. Avances Técnicos Cenicafé, 393, 1-8. http://biblioteca.cenicafe.org/bitstream/10778/351/1/avt0393.pdf
dc.relationRodríguez-Valencia, N., Zambrano Franco, D. A., & Ramírez, C. A. (2013). Manejo y disposición de los subproductos y de las aguas residuales del beneficio del café. En Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura (Vol. 3, pp. 111-136). Federación Nacional de Cafeteros. https://biblioteca.cenicafe.org/bitstream/10778/4347/1/cenbook-0026_31.pdf
dc.relationRömling, U., & Galperin, M. Y. (2015). Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. En Trends in Microbiology (Vol. 23, Número 9, pp. 545-557). Elsevier Ltd. https://doi.org/10.1016/j.tim.2015.05.005
dc.relationRyngajłło, M., Jędrzejczak-Krzepkowska, M., Kubiak, K., Ludwicka, K., & Bielecki, S. (2020). Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Applied Microbiology and Biotechnology, 104(15), 6565-6585. https://doi.org/10.1007/s00253-020-10671-3
dc.relationSaavedra-Sanabria, O. L., Durán, D., Cabezas, J., Hernández, I., Blanco-Tirado, C., & Combariza, M. Y. (2021). Cellulose biosynthesis using simple sugars available in residual cacao mucilage exudate. Carbohydrate Polymers, 274, 118645. https://doi.org/10.1016/j.carbpol.2021.118645
dc.relationSadeghian-Khalajabadi, S., Mejía-Muñoz, B., & Arcilaga-Pulgarín, J. (2006). Composición Elemental De Frutos De Café Y Extracción De Nutrientes Por La Cosecha En La Zona Cafetera De Colombia. Avances Técnicos Cenicafé, 364, 251-261.
dc.relationSantos, R. A. C. dos, Berretta, A. A., Barud, H. da S., Ribeiro, S. J. L., González-García, L. N., Zucchi, T. D., Goldman, G. H., & Riaño-Pachón, D. M. (2015). Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea. Genome Announcements, 3(6). https://doi.org/10.1128/genomeA.01404-15
dc.relationSanz Uribe, J. R., Oliveros Tascón, C. E., Ramírez Gómez, C. A., López Posada, U., & Velásquez Henao, J. (2011). Controle los flujos de café y agua en el modelo Belcosub. Avances Técnicos Cenicafé, 405, 1-8. https://biblioteca.cenicafe.org/bitstream/10778/40/1/avt0405.pdf
dc.relationSchoch, C. L., Ciufo, S., Domrachev, M., Hotton, C. L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J. P., Sun, L., Turner, S., & Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. https://doi.org/10.1093/database/baaa062
dc.relationSchrecker, S. T., & Gostomski, P. A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnology Letters, 27(19), 1435-1438. https://doi.org/10.1007/s10529-005-1465-y
dc.relationSegal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786-794. https://doi.org/10.1177/004051755902901003
dc.relationSerafica, G., Mormino, R., & Bungay, H. (2002). Inclusion of solid particles in bacterial cellulose. Applied Microbiology and Biotechnology, 58(6), 756-760. https://doi.org/10.1007/s00253-002-0978-8
dc.relationSinghania, R. R., Patel, A. K., Tseng, Y.-S., Kumar, V., Chen, C.-W., Haldar, D., Saini, J. K., & Dong, C.-D. (2022). Developments in bioprocess for bacterial cellulose production. Bioresource Technology, 344, 126343. https://doi.org/10.1016/j.biortech.2021.126343
dc.relationSinghsa, P., Narain, R., & Manuspiya, H. (2018). Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 25(3), 1571-1581. https://doi.org/10.1007/s10570-018-1699-1
dc.relationSkoog, D. A., West, D. M., Crouch, S. R., & Holler, F. J. (2014). Fundamentos de química analítica (9.a ed.). Cengage Learning Editores S.A. de C.V.
dc.relationSon, C.-J., Chung, S.-Y., Lee, J.-E., & Kim, S.-J. (2002). Isolation and Cultivation Characteristics of Acetobacter xylinum KJ-1 Producing Bacterial Cellulose in Shaking Cultures. Journal of Microbiology and Biotechnology, 12(5), 722-728.
dc.relationSon, H.-J., Heo, M.-S., Kim, Y.-G., & Lee, S.-J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnology and Applied Biochemistry, 33(1), 1. https://doi.org/10.1042/BA20000065
dc.relationSon, H.-J., Kim, H.-G., Kim, K.-K., Kim, H.-S., Kim, Y.-G., & Lee, S.-J. (2003). Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresource Technology, 86(3), 215-219. https://doi.org/10.1016/S0960-8524(02)00176-1
dc.relationSouza, K. C. de, Trindade, N. M., Amorim, J. D. P. de, Nascimento, H. A. do, Costa, A. F. S., Henrique, M. A., Caetano, V. F., Sarubbo, L. A., & Vinhas, G. M. (2021). Kinetic Study of a Bacterial Cellulose Production by Komagataeibacter Rhaeticus Using Coffee Grounds and Sugarcane Molasses. Materials Research, 24(3). https://doi.org/10.1590/1980-5373-mr-2020-0454
dc.relationSouza, S. S. de, Berti, F. v., de Oliveira, K. P. v., Pittella, C. Q. P., de Castro, J. v., Pelissari, C., Rambo, C. R., & Porto, L. M. (2019). Nanocellulose biosynthesis by Komagataeibacter hansenii in a defined minimal culture medium. Cellulose, 26(3), 1641-1655. https://doi.org/10.1007/s10570-018-2178-4
dc.relationSperotto, G., Stasiak, L. G., Godoi, J. P. M. G., Gabiatti, N. C., & de Souza, S. S. (2021). A review of culture media for bacterial cellulose production: complex, chemically defined and minimal media modulations. Cellulose, 28(5), 2649-2673. https://doi.org/10.1007/s10570-021-03754-5
dc.relationSudha, M. L. (2011). Apple Pomace (By-Product of Fruit Juice Industry) as a Flour Fortification Strategy. En Flour and Breads and their Fortification in Health and Disease Prevention (pp. 395-405). Elsevier. https://doi.org/10.1016/B978-0-12-380886-8.10036-4
dc.relationSun, B., Zi, Q., Chen, C., Zhang, H., Gu, Y., Liang, G., & Sun, D. (2018). STUDY OF SPECIFIC METABOLIC PATTERN OF ACETOBACTER XYLINUM NUST4.2 AND BACTERIAL CELLULOSE PRODUCTION IMPROVEMENT. Cellulose Chemistry and Technology, 52(9-10), 795-801. https://www.cellulosechemtechnol.ro/pdf/CCT9-10(2018)/p.795-801.pdf
dc.relationSundaram, M. K., Nehru, G., Tadi, S. R. R., Katsuno, N., Nishizu, T., & Sivaprakasam, S. (2021). Bacterial cellulose production by Komagataeibacter hansenii utilizing agro-industrial residues and its application in coffee milk stabilization. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01867-2
dc.relationTantratian, S., Tammarate, P., Krusong, W., Bhattarakosol, P., & Phunsri, A. (2005). Effect of Dissolved Oxygen on Cellulose Production by Acetobacter sp. Journal of scientific research, Chulalongkorn University Common abbreviations: J. Sci. Res. Chula. Univ. [ZDB], 30(2), 179-186.
dc.relationTaweecheep, P., Naloka, K., Matsutani, M., Yakushi, T., Matsushita, K., & Theeragool, G. (2019). Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens. Carbohydrate Polymers, 226. https://doi.org/10.1016/j.carbpol.2019.115243
dc.relationTeixeira, R. S. S., da Silva, A. S., Ferreira-Leitão, V. S., & Bon, E. P. da S. (2012). Amino acids interference on the quantification of reducing sugars by the 3,5-dinitrosalicylic acid assay mislead carbohydrase activity measurements. Carbohydrate Research, 363, 33-37. https://doi.org/10.1016/j.carres.2012.09.024
dc.relationThiex, N., Novotny, L., & Crawford, A. (2012). Determination of Ash in Animal Feed: AOAC Official Method 942.05 Revisited. Journal of AOAC INTERNATIONAL, 95(5), 1392-1397. https://doi.org/10.5740/jaoacint.12-129
dc.relationUdoetok, I. A., Wilson, L. D., & Headley, J. v. (2018). Ultra-sonication assisted cross-linking of cellulose polymers. Ultrasonics Sonochemistry, 42, 567-576. https://doi.org/10.1016/j.ultsonch.2017.12.017
dc.relationUl-Hamid, A. (2018). A Beginners’ Guide to Scanning Electron Microscopy. Springer International Publishing. https://doi.org/10.1007/978-3-319-98482-7
dc.relationUl-Islam, M., Khan, S., Ullah, M. W., & Park, J. K. (2015). Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnology Journal, 10(12). https://doi.org/10.1002/biot.201500106
dc.relationUl-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers, 88(2), 596-603. https://doi.org/10.1016/j.carbpol.2012.01.006
dc.relationUniversitat Politècnica de València. (2011, octubre 24). Materiales poliméricos: cristalinidad | 19/22 | UPV. https://www.youtube.com/watch?v=LOAFbiM_ibU
dc.relationU.S. EPA. (1994). Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. https://www.epa.gov/esam/method-2007-determination-metals-and-trace-elements-water-and-wastes-inductively-coupled
dc.relationVazquez, A., Foresti, M. L., Cerrutti, P., & Galvagno, M. (2013). Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545-554. https://doi.org/10.1007/s10924-012-0541-3
dc.relationVida. (2015). Habrá duras sanciones por vertimientos que contaminen cuerpos de agua. EL TIEMPO. https://www.eltiempo.com/archivo/documento/CMS-15430915
dc.relationVolova, T. G., Prudnikova, S. v., Sukovatyi, A. G., & Shishatskaya, E. I. (2018). Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Applied Microbiology and Biotechnology, 102(17), 7417-7428. https://doi.org/10.1007/s00253-018-9198-8
dc.relationWada, M., Sugiyama, J., & Okano, T. (1993). Native celluloses on the basis of two crystalline phase (Iα/Iβ) system. Journal of Applied Polymer Science, 49(8), 1491-1496. https://doi.org/10.1002/app.1993.070490817
dc.relationWang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267. https://doi.org/10.1128/AEM.00062-07
dc.relationWang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology, 73(16), 5261-5267. https://doi.org/10.1128/AEM.00062-07
dc.relationWang, S.-S., Han, Y.-H., Chen, J.-L., Zhang, D.-C., Shi, X.-X., Ye, Y.-X., Chen, D.-L., & Li, M. (2018). Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1. Polymers, 10(9), 963. https://doi.org/10.3390/polym10090963
dc.relationWang, Z. G., Xiang, D., Wang, X. B., & Li, C. F. (2016). Preparation of an inoculum of Gluconacetobacter xylinus without mutants in shaken culture. Journal of Applied Microbiology, 121(3), 713-720. https://doi.org/10.1111/jam.13193
dc.relationWatanabe, K., Tabuchi, M., Morinaga, Y., & Yoshinaga, F. (1998). Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose, 5(3), 187-200. https://doi.org/10.1023/A:1009272904582
dc.relationWohlert, M., Benselfelt, T., Wågberg, L., Furó, I., Berglund, L. A., & Wohlert, J. (2022). Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose, 29(1), 1-23. https://doi.org/10.1007/s10570-021-04325-4
dc.relationWood, I. P., Elliston, A., Ryden, P., Bancroft, I., Roberts, I. N., & Waldron, K. W. (2012). Rapid quantification of reducing sugars in biomass hydrolysates: Improving the speed and precision of the dinitrosalicylic acid assay. Biomass and Bioenergy, 44, 117-121. https://doi.org/10.1016/j.biombioe.2012.05.003
dc.relationYamada, Y. (1983). Acetobacter xylinus sp. nov., nom. rev., for the cellulose-forming and cellulose-less, acetate-oxidizing acetic acid bacteria with the Q-10 system. The Journal of General and Applied Microbiology, 29(5), 417-420. https://doi.org/10.2323/jgam.29.417
dc.relationYamada, Y., Hoshino, K., & Ishikawa, T. (1997). The Phylogeny of Acetic Acid Bacteria Based on the Partial Sequences of 16S Ribosomal RNA: The Elevation of the Subgenus Gluconoacetobacter to the Generic Level. Bioscience, Biotechnology, and Biochemistry, 61(8), 1244-1251. https://doi.org/10.1271/bbb.61.1244
dc.relationYamada, Y., & Kondo, K. (1984). Gluconoacetobacter, a new subgenus comprising the acetate-oxidizing acetic acid bacteria with ubiquinone-10 in the genus Acetobacter. The Journal of General and Applied Microbiology, 30(4), 297-303. https://doi.org/10.2323/jgam.30.297
dc.relationYamada, Y., & Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 15-24. https://doi.org/10.1016/j.ijfoodmicro.2007.11.077
dc.relationYamada, Y., Yukphan, P., Thi, H., Vu, L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen . nov ., with proposals of new combinations ( Acetobacteraceae ). 58, 397-404.
dc.relationYamamoto, H., Horii, F., & Hirai, A. (1996). In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of celluloses Iα and Iβ at the early stage of incubation. Cellulose, 3(1), 229-242. https://doi.org/10.1007/BF02228804
dc.relationYamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., Nishi, Y., & Uryu, M. (1989). The structure and mechanical properties of sheets prepared from bacterial cellulose - Part 1. Journal of Materials Science, 24(9), 3141-3145. https://doi.org/10.1007/BF01139032
dc.relationYao, J., Chen, S., Chen, Y., Wang, B., Pei, Q., & Wang, H. (2017). Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers. ACS Applied Materials & Interfaces, 9(24), 20330-20339. https://doi.org/10.1021/acsami.6b14650
dc.relationYe, J., Zheng, S., Zhang, Z., Yang, F., Ma, K., Feng, Y., Zheng, J., Mao, D., & Yang, X. (2019). Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274, 518-524. https://doi.org/10.1016/j.biortech.2018.12.028
dc.relationYepes Betancur, D. P. (2019). Extracción de compuestos bioactivos a partir de semilla de aguacate (<i>Persea americana<i/> Mill cv. Hass) por Fermentación en Medio Sólido y aplicación en matrices alimentaria. Universidad Nacional de Colombia.
dc.relationZambrano-Franco, D. A., & Isaza-Hinestroza, J. D. (1994). Lavado del café en los tanques de fermentación. Revista Cenicafé, 43(5), 106-118. https://www.cenicafe.org/es/publications/arc045%2803%29106-118.pdf
dc.relationZeng, X., Liu, J., Chen, J., Wang, Q., Li, Z., & Wang, H. (2011). Screening of the common culture conditions affecting crystallinity of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 38(12), 1993-1999. https://doi.org/10.1007/s10295-011-0989-5
dc.relationZeng, X., Small, D. P., & Wan, W. (2011). Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydrate Polymers, 85(3), 506-513. https://doi.org/10.1016/j.carbpol.2011.02.034
dc.relationZhang, C. J., Wang, L., Zhao, J. C., & Zhu, P. (2011). Effect of Drying Methods on Structure and Mechanical Properties of Bacterial Cellulose Films. Advanced Materials Research, 239-242, 2667-2670. https://doi.org/10.4028/www.scientific.net/AMR.239-242.2667
dc.relationZhong, C. (2020). Industrial-Scale Production and Applications of Bacterial Cellulose. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.605374
dc.relationZhong, C., Zhang, G.-C., Liu, M., Zheng, X.-T., Han, P.-P., & Jia, S.-R. (2013). Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Applied Microbiology and Biotechnology, 97(14), 6189-6199. https://doi.org/10.1007/s00253-013-4908-8
dc.relationZhou, L. L., Sun, D. P., Hu, L. Y., Li, Y. W., & Yang, J. Z. (2007). Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. Journal of Industrial Microbiology & Biotechnology, 34(7), 483-489. https://doi.org/10.1007/s10295-007-0218-4
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleFermentación del mucílago de café para la obtención de celulosa bacteriana con aislados nativos de Komagataeibacter spp
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución