dc.contributorSánchez Nieves, Jimena
dc.contributorMelgarejo Muñoz, Luz Marina
dc.contributorFisiología del Estrés y Biodiversidad en Plantas y Microorganismos
dc.creatorSilva Velandia, Silvia Fernanda
dc.date.accessioned2023-06-26T19:44:20Z
dc.date.accessioned2023-08-25T13:35:16Z
dc.date.available2023-06-26T19:44:20Z
dc.date.available2023-08-25T13:35:16Z
dc.date.created2023-06-26T19:44:20Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84071
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426989
dc.description.abstractEl estrés abiótico por salinidad está asociado con detrimento del crecimiento vegetal, y por lo tanto con la productividad de los cultivos. Por lo que el uso de microorganismos que cuentan con mecanismos fitoestimuladores y de mejoramiento del estado nutricional de las plantas en condiciones de salinidad, surge como una posible solución ante el presente panorama de degradación de los suelos por salinización, debido al exceso de fertilizantes químicos y también como efecto del cambio climático. En la presente investigación se evaluó la potencial actividad de cuatro aislamientos fúngicos halotolerantes en la mitigación del estrés abiótico por salinidad y promoción de crecimiento vegetal en rábano (Raphanus sativus L.), a través de mecanismos como la producción de auxinas, solubilización de fosfatos y la actividad ACC desaminasa. Con base en las características morfológicas, y por medio del uso de claves taxonómicas, los hongos se identificaron preliminarmente como: Aspergillus terreus, Aspergillus fumigatus, Penicillium citrinum y Rhodotorula spp. El estudio constó de tres fases: 1) evaluación in vitro de algunos mecanismos de promoción del crecimiento vegetal, 2) evaluación del efecto de la inoculación de los hongos sobre la germinación In vitro de semillas de rábano; 3) evaluación del efecto de la inoculación sobre parámetros de crecimiento y fisiología de plantas de rábano bajo condiciones de invernadero, sometidas a salinidad en el agua de riego a 100 y 200 mM de NaCl. Las determinaciones de crecimiento, fluorescencia de la clorofila a, contenido de pigmentos y estado hídrico, se realizaron al final del bioensayo, en el tiempo de cosecha del rábano. Se encontró que, en general, la inoculación de los hongos tiene efectos positivos sobre el crecimiento y variables fisiológicas de las plantas de rábano sometidas a altas concentraciones de NaCl, siendo P. citrinum el que tuvo mayor efectividad en cuanto a su impacto positivo sobre las plantas. La mitigación del estrés registrada en plantas de rábano permite concluir que estos hongos o sus metabolitos podrían usarse en la formulación de biofertilizantes aplicables a cultivos sembrados en suelos salinos. (Texto tomado de la fuente).
dc.description.abstractAbiotic stress due to salinity is associated with detriment of plant growth, and therefore with crop productivity. Therefore, the use of microorganisms that have phytostimulatory mechanisms and improve the nutritional status of plants under salinity conditions, emerges as a possible solution to the present scenario of soil degradation by salinization, due to the excess of chemical fertilizers and also as an effect of climate change. In the present investigation, the potential activity of four halotolerant fungal isolates in mitigating abiotic stress and promoting plant growth in radish (Raphanus sativus L.) was evaluated through mechanisms such as auxin production, phosphate and potassium solubilization, and ACC deaminase activity. Based on morphological characteristics, and through the use of taxonomic keys, the fungi were preliminarily identified as: Aspergillus terreus, Aspergillus fumigatus, Penicillium citrinum and Rhodotorula spp. The study consisted of three phases: 1) in vitro evaluation of some mechanisms of plant growth promotion; 2) evaluation of the effect of fungal inoculation on the in vitro germination of radish seeds; 3) evaluation of the effect of inoculation on growth and physiology parameters of radish plants under greenhouse conditions, subjected to salinity in irrigation water at 100 and 200 mM NaCl. Determinations of growth, chlorophyll a fluorescence, pigment content and water status were made at the end of the bioassay, at the time of radish harvest. It was found that, in general, fungal inoculation has positive effects on the growth and physiology of radish plants subjected to high NaCl concentrations, with P. citrinum being the most effective in terms of its positive impact on plants. The stress mitigation recorded in radish plants leads to the conclusion that these fungi or their metabolites could be used in the formulation of biofertilizers applicable to crops grown in saline soils.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAgrosavia
dc.relationAgrovoc
dc.relation1. Abdel A., Mohammad A. Abbas, Amal A. Abdel Wahid, W. Paul Quick, Gaber M. Abogadallah, (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress, Journal of Experimental Botany, Volume 54, Issue 392. Pages 2553–2562, https://doi.org/10.1093/jxb/erg277
dc.relation2. Abdel T.M.; Alawlaqi, M.M. (2018) Molecular Identification of Rhizospheric Thermo-Halotolerant Aspergillus terreus and Its Correlation to Sustainable Agriculture. BioResources Doi: 1380128023.
dc.relation3. Africano K, Pinzón E. (2014). Comportamiento fisiológico de plantas de rábano (Raphanus sativus L.) sometidas a estrés por salinidad. Conexión agropecuaria JDC 4(2), p 13-24.
dc.relation4. Ahima, J., Zhang, X., Yang, Q., Zhao, L., Maurice Tibiru, A., Zhang, H. (2019). Biocontrol activity of Rhodotorula mucilaginosa combined with salicylic acid against Penicillium digitatum infection in oranges. Biological Control. doi: 10.1016/j.biocontrol.2019.0
dc.relation5. Ali, I., Khaliq, S., Sajid, S., Akbar, A. (2019). Biotechnological Applications of Halophilic Fungi: Past, Present, and Future. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, 291–306. doi:10.1007/978-3-030-19030-9_1
dc.relation6. Ali, R., Gul, H., Hamayun, M., Rauf, M., Iqbal, A., Shah, M., Hussain, A., Bibi, H., Lee, I.-J. (2021). Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/s40538-021-00208-9
dc.relation7. Asaf, S.; Hamayun, M.; Khan, A.L.; Waqas, M.; Khan, M.A.; Jan, R.; Lee, I.J.; Hussain, A (2018). Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol. Biochem, 128, 13–23.
dc.relation8. Ashraf, M., Shahzad, S. M., Imtiaz, M., Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes: A review. J. Plant Nutr. 41, 1065–1081. doi: 10.1016/ j. crvi.2009.03.009
dc.relation9. Asif M, Anwar H, Muhammad I, Naeem K, Muhammad H, Ismail Sahib Gul Afridi, In-Jung Lee (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish, Journal of Plant Interactions, 13:1, 532-542, DOI: 10.1080/17429145.2018.1542041
dc.relation10. Ayyub CM, Shaheen MR, Raza S, Yaqoob MS, Qadri RWK, Azam M, Ghani MA, Khan I, Akhtar N (2016). Evaluation of different radish (Raphanus sativus) genotypes under different saline regimes. American Journal of Plant Sciences 7(6):894-898. DOI: http://dx.doi.org/10.4236/ajps.2016.76084
dc.relation11. Badawy, A.A.; Alotaibi, M.O.; Abdelaziz, A.M.; Osman, M.S.; Khalil, A.M.A.; Saleh, A.M.; Mohammed, A.E.; Hashem, A.H (2021) Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites , 11, 428. https://doi.org/10.3390/metabo11070428
dc.relation12. Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222. doi:10.1016/j.chemosphere.2018
dc.relation13. Beltagi, S., mohamed, A., Rashed, m. M. (2010). Response of Antioxidative Enzymes to Cadmium Stress in Leaves and Roots of Radish (Raphanus sativus L.). Notulae Scientia Biologicae, 2(4), 76-82. https://doi.org/10.15835/nsb245395
dc.relation14. Bernstein, N. (2019). Plants and salt: Plant response and adaptations to salinity. Model Ecosystems in Extreme Environments, 101–112. doi:10.1016/b978-0-12-812742-1.00005-2
dc.relation15. Bibi, S., Hussain, A., Hamayun, M., Rahman, H., Iqbal, A., Shah, M., … Islam, B. (2018). Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere, 211, 653–663. doi:10.1016/j.chemosphere.2018.
dc.relation16. Bonilla M (2005). Estrategias adaptativas de plantas del páramo y del bosque altoandino en la Cordillera Oriental de Colombia. Colección Textos . Universidad Nacional de Colombia - Unibiblos, Bogotá. p 177-190.
dc.relation17. Boughalleb, N., Salem, I. B., M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1). doi:10.1186/s41938-017-0010-3
dc.relation18. Brotman, Y., Landau, U., Cuadros-Inostroza, A., Tohge, T., Fernie, A. R., Chet, I., et al. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9:e1003221. doi: 10.1371/journal.ppat.1003221
dc.relation19. Callejas, R., Kania, E., Contreras, A., Peppi, C., Morales, L. (2013). Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 31(4), 19–26. https://doi.org/10.4067/S0718-34292013000400003
dc.relation20. Calvente, V., de Orellano, M. E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M. I. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226–229. doi:10.1038/sj.jim.7000117
dc.relation21. Cao, W. H., Liu, J., He, X. J., Mu, R. L., Zhou, H. L., Chen, S. Y., et al. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707–719. doi: 10.1104/pp.106.094292
dc.relation22. Casares. E. (1981). Producción de hortalizas. Tercera edición. San José Costa Rica. Pág. 272-275
dc.relation23. Chammoun N, Geller D, Das K (2013). Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel. Industrial Crops and Products, 45, 155–159. https://doi.org/10.1016/j.indcrop.2012.11.029
dc.relation24. Cheng, Z., Chi, M., Li, G., Chen, H., Sui, Y., Sun, H. Liu, J. (2016). Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 95, 49–56. doi:10.1016/j.biocontrol.2016.01.001
dc.relation25. Dallas JE (2000) Metodos multivariados aplicados al analisis de datos.Mexico: Thomson Paraninfo S.A.
dc.relation26. Dassarma, Priya, Coker, James Huse, Valerie Dassarma, Shiladitya. (2010). Halophiles, Industrial Applications. 10.1002/9780470054581.eib439.
dc.relation27. De Lucca, A.J (2007). Harmful Fungi in Both Agriculture and Medicine. Rev. Iberoam. Micol. 24, 3–13.
dc.relation28. DIONISIO-SESE, M.L.; TOBITA, S (2000) Effect of salinity on sodium content and photosynthetic responses of rice seedling differing in salt tolerance. Journal of Plant Physiology, v.157, p.54- 58.
dc.relation29. Elgharably, A., Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere, 18, 100345. doi:10.1016/j.rhisph.2021.10034
dc.relation30. Esquivel R., Gavilanes-Ruiz, M., Cruz-Ortega, R. y Huante, P. (2013). Importancia agrobiotecnoló-gica de la enzima ACC desaminasa en rizobac-terias, una revisión. Revista Fitotecnia Mexicana, 36(3), 251-258.
dc.relation31. Etesami, H., Emami, S., Alikhani, H. A.. (2017). Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬A review. Journal of soil science and plant nutrition, 17(4), 897-911. https://dx.doi.org/10.4067/S0718-95162017000400005
dc.relation32. Firrincieli, A., Otillar, R., Salamov, A., Schmutz, J., Khan, Z., Redman, R. S. Doty, S. L. (2015). Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00978
dc.relation33. Gaballah M.S. , Gomaa A.M., (2004). Performance of Faba Bean Varieties Grown under Salinity Stress and Biofertilized with Yeast. Journal of Applied Sciences, 4: 93-99.DOI: 10.3923/jas.2004.93.99
dc.relation34. Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Corrêa, B. O., da Silva Brasil, M., Zanoelo, F. F. (2021). Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere, 18, 100332. https://doi.org/10.1016/j.rhisph.2021.100332
dc.relation35. García, Adriana, Rhoden, Sandro A, Rubin Filho, Celso J, Nakamura, Celso V, Pamphile, João A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L . and their localization by scanning electron microscopy. Biological Research, 45(2), 139-148. https://dx.doi.org/10.4067/S0716-97602012000200006
dc.relation36. Ghilardi, C., Sanmartin Negrete, P., Carelli, A. A., Borroni, V. (2020). Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing, 7(1). doi:10.1186/s40643-020-00341-7
dc.relation37. Gomaa, A.M. Gaballah M. S., Hazaa M.M. (2005). Changes in Compatible Solutes of Some Maize Varieties Grown in Sandy Soil and Biofertilized with Rhodotorula glutinis under Saline Conditions. Journal of Applied Sciences Research 1(5): 347-351, 2005
dc.relation38. Gómez L. (2011). Evaluación del cultivo de rábano (Raphanus sativus L.) bajo diferentes condiciones de fertilización orgánica e inorgánica. Universidad Autónoma Agraria Antonio Narro. México.
dc.relation39. Gopinath, S. C. B., Hilda, A., Anbu, P. (2005). Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience, 46(2), 119–126. doi:10.1007/s10267-004-0221-9
dc.relation40. Gunde, N., Ramos, J., Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological Research, 113(11), 1231–1241. doi:10.1016/j.mycres.2009.09.002
dc.relation41. Hadas, A (1977). Water uptake and germination of leguminous seeds in soils of changing matrix and osmotic water potential. Journal of Experimental Botany, v.28, p.977-985.
dc.relation42. Hakim Safinah, and Tri W. Yuwati. (2020). "The Use of Fungal Endophyte Penicillium Citrinum On Tree Seedling: Applicability and Limitation." BIO web of conferences, v. 20 ,. pp. 03005. doi: 10.1051/bioconf/20202003005
dc.relation43. Hamedi, J., Mohammadipanah, F., Ventosa, A. (2012). Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 17(1), 1–13. doi:10.1007/s00792-012-0493-5
dc.relation44. Hossain, M. M., Sultana, F., Islam, S. (2017). Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives, 135–191. doi:10.1007/978-981-10-6593-4_6
dc.relation45. Hsieh, E. J., Cheng, M. C., and Lin, T. P. (2013). Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 82, 223–237. doi: 10.1007/s11103-013-0054-z
dc.relation46. Ibrar, M., Ullah, M. W., Manan, S., Farooq, U., Rafiq, M., Hasan, F. (2020). Fungi from the extremes of life: an untapped treasure for bioactive compounds. Applied Microbiology and Biotechnology. doi:10.1007/s00253-020-10399-0
dc.relation47. IDEAM. (2017). Mapa Nacional de degradación de suelos por salinización. Recuperado de: http://www.ideam.gov.co/documents/24277/69989379/Lanzamiento+mapa+Salinizacion+FN+OPT.pdf/624515d0-799d-41ef-b1ef-bb7e868680f3
dc.relation48. Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302–318. doi:10.3103/s0095452712050040
dc.relation49. Islam, N.F. Borthakur SK. (2012). Screening of mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology Quarantine — Doi 10.5943/ppq/2/1/11
dc.relation50. Islam, S., Akanda, A. M., Sultana, F., Hossain, M. M. (2013). Chilli rhizosphere fungusAspergillusspp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Archives Of Phytopathology And Plant Protection, 47(10), 1231–1238. doi:10.1080/03235408.2013.83763
dc.relation51. Jafarinia, Mojtaba Shariati, Mahmoud. (2012). Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. Iranian Journal of Science and Technology, Transaction A: Science. 36. 73-76.
dc.relation53. Javed, A., Khan, S.A., Shah, A.H., Hussain, A., Shinwari, Z.K. (2020). Potential of endophytic fungus aspergillus terreus as potent plant growth promoter. Pakistan Journal of Botany, 52(3), 1083-1086.
dc.relation54. Kasim, W.A., K.M. Saad-Allah and M. Hamouda, (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). Int. J. Agric. Biol., 18: 653‒660
dc.relation55. Khan MI, Ali N, Jan G, Hamayun M, Jan FG, Iqbal A, Hussain A, Lee IJ (2022). Salt Stress Alleviation in Triticum aestivum Through Primary and Secondary Metabolites Modulation by Aspergillus terreus BTK-1. Front Plant Sci. Mar 10;13:779623. doi: 10.3389/fpls.2022.779623. PMID: 35360328; PMCID: PMC8960994.
dc.relation56. Khan SA, Hamayun M, Hyeokjun Y, Kim H, Suh S, Hwang S, Kim J, Lee I, Choo Y,YoonU, et al. (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8:231.
dc.relation57. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, I.-J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852–861. doi:10.1016/j.plaphy.2011.03.005
dc.relation58. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, J.-H., Lee, I.-J. (2011). Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochemistry, 46(2), 440–447. doi:10.1016/j.procbio.2010.09.0
dc.relation59. Khan, M. S., Zaidi, A., Ahmad, E. (2014). Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. Phosphate Solubilizing Microorganisms, 31–62. doi:10.1007/978-3-319-08216-5_2
dc.relation60. Khushdil, F., Jan, F. G., Jan, G., Hamayun, M., Iqbal, A., Hussain, A., Bibi, N. (2019). Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus L. Plant Physiology and Biochemistry, 144, 127–134. doi:10.1016/j.plaphy.2019.09.038
dc.relation61. KURAMATA, M., FUJIOKA, S., SHIMADA, A., KAWANO, T., KIMURA, Y. (2007). Citrinolactones A, B and C, and Sclerotinin C, Plant Growth Regulators fromPenicillium citrinum. Bioscience, Biotechnology, and Biochemistry, 71(2), 499–503. doi:10.1271/bbb.60538
dc.relation62. Kurjogi, K.N. Basavesha, V.P. Savalgi (2021) Impact of potassium solubilizing fungi as biopesticides and its role in crop improvement, Biocontrol Agents and Secondary Metabolites. https://doi.org/10.1016/B978-0-12-822919-4.00002-8.
dc.relation63. Kurtzman C.P., J.W. Fell, Teun Boekhout (2011). The Yeast A taxonomic study. Elsevier. P 1973-1906.
dc.relation64. Li X, Zhao C, Zhang T, Wang G,Amombo E, Xie Y and Fu J (2021)Exogenous Aspergillus aculeatusEnhances Drought and HeatTolerance of Perennial Ryegrass.Front. Microbiol. 12:593722.doi: 10.3389/fmicb.2021.593722
dc.relation65. Lian, B., Wang, B., Pan, M., Liu, C., Teng, H. H. (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72(1), 87–98. doi:10.1016/j.gca.2007.10.005
dc.relation66. Liu, Z.; Cheng, R.; Xiao, W.; Guo, Q.; Wang, N. (2014) Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9, 1–9.
dc.relation67. Lubna, Asaf, S., Hamayun, M., Khan, A. L., Waqas, M., Khan, M. A., … Hussain, A. (2018). Salt tolerance of Glycine max .L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiology and Biochemistry, 128, 13–23. doi:10.1016/j.plaphy.2018.05.00
dc.relation68. Lugtenberg B, Kamilova F. (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol.;63:541-56. doi: 10.1146/annurev.micro.62.081307.162918. PMID: 19575558.
dc.relationMa Y. , Erwin A. Galinski , William D. Grant , Aharon Oren , and Antonio Ventosa (2010) Halophiles 2010: Life in Saline Environments. ASM journals. Doi: https://doi.org/10.1128/AEM.01868-10
dc.relation70. Machuca, A., Milagres, A. M. F. (2003). Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Letters in Applied Microbiology, 36(3), 177–181. doi:10.1046/j.1472-765x.2003.012
dc.relation71. Maheshwari, D. K., Saraf, M. (2015). Halophiles. Sustainable Development and Biodiversity. doi:10.1007/978-3-319-14595-2
dc.relation72. Marcelis, L., Van Hooijdonk, J. (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil 215, 57–64. https://doi.org/10.1023/A:1004742713538.
dc.relation73. Mathur, P., Chaturvedi, P., Sharma, C. (2022). Improved seed germination and plant growth mediated by compounds synthesized by endophytic Aspergillus niger (isolate 29) isolated from Albizia lebbeck (L.) Benth. 3 Biotech 12, 271. https://doi.org/10.1007/s13205-022-03332-x
dc.relation74. Maxwell, K.; Johnson, G (2000). Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668
dc.relation75. Melgarejo L. (2010) Libro de experimentos en fisiología vegetal. Universidad Nacional de Colombia. 1ra ed. Bogotá, Colombia.
dc.relation76. Membrillera, José (1950). Clave determinativa de las especies del género penicillium. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/6407
dc.relation77. Membrillera, José (1951). Clave determinativa de las especies del género aspergillus. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/6407
dc.relation78. Mendes, G.O.; Galvez, A.; Vassileva, M.; Vassilev, N (2017). Fermentation Liquid Containing Microbially Solubilized P Significantly Improved Plant Growth and P Uptake in Both Soil and Soilless Experiments. Appl. Soil Ecol. 2017, 117, 208–211
dc.relation79. Mittal, V., Singh, O., Nayyar, H., Kaur, J., Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40(3), 718–727. doi:10.1016/j.soilbio.2007.10.0
dc.relation80. Mohamed, H. M., El-Homosy, R. F., Abd-Ellatef, A.-E. H., Salh, F. M., Hussein, M. Y. (2016). Identification of Yeast Strains Isolated from Agricultural Soils for Releasing Potassium-bearing Minerals. Geomicrobiology Journal, 34(3), 261–266. doi:10.1080/01490451.2016.11867
dc.relation81. Monica Boscaiu, Cristina Lull, Josep Llinares, Oscar Vicente, Herminio Boira (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species, Journal of Plant Ecology, Volume 6, Issue 2, Pages 177–186, https://doi.org/10.1093/jpe/rts017
dc.relation82. Moreno-C, Lina Margarita, López-Casallas, Marcela, Cruz Barrera, Fredy Mauricio. (2021). Phosphate solubilization by Burkholderia species isolated from Oxisols from the Colombian high plains. Ciencia y Tecnología Agropecuaria, 22(2), Epub May 01, 2021.https://doi.org/10.21930/rcta.vol22_num2_art:1897
dc.relation83. Moukhtari, A., Cabassa-Hourton, C., Farissi, M., Savouré, A. (2020). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.01127
dc.relation84. Moukhtari, A., Farissi, M., Savouré, A. (2019). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.01127
dc.relation85. Mrudula S, Murugammal R. (2011) Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. Jul;42(3):1119-27. doi: 10.1590/S1517-838220110003000033. Epub 2011 Sep 1. PMID: 24031730; PMCID: PMC3768773.
dc.relation86. Mujica Y, Sales J. (2013). Funcionamiento de la inoculación líquida con hongos micorrízicos arbusculares (HMA) en plantas de tomate (Solanum lycopersicum L.). Cultivos Tropicales, 34(4), 5-8. Recuperado en 16 de noviembre de 2020, de http://scielo.sld.cu/scielo.php?script=sci_arttext pid=S0258-59362013000400001 lng=es tlng=es.
dc.relation87. Mundra, S., Arora, R., Stobdan, T. (2011). Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World Journal of Microbiology and Biotechnology, 27(10), 2387–2396. doi:10.1007/s11274-011-0708-4
dc.relation88. Murali, M., Sudisha, J., Amruthesh, K. N., Ito, S.-I., Shetty, H. S. (2012). Rhizosphere fungusPenicillium chrysogenumpromotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology, 15(1), 111–118. doi:10.1111/j.1438-8677.2012.00617.x
dc.relation89. Muthukumarasamy, M., Gupta, S.D. Panneerselvam, R. (2000) Influence of Triadimefon on the Metabolism of NaCl Stressed Radish. Biologia Plantarum 43, 67–72. https://doi.org/10.1023/A:1026503013445
dc.relation90. Netondo, G. W., Onyango, J. C., Beck, E. (2004). Sorghum and Salinity. Crop Science, 44(3), 806. doi:10.2135/cropsci2004.8060
dc.relation91. Niehus, R., Picot, A., Oliveira, N. M., Mitri, S., Foster, K. R. (2017). The evolution of siderophore production as a competitive trait. Evolution, 71(6), 1443–1455. doi:10.1111/evo.13230
dc.relation92. Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. (2009) Biotechnological Production of Itaconic Acid and Its Biosynthesis in Aspergillus terreus. App. Microbiol. Biotechnol. 84, 597–606.
dc.relation93. Olivera Viciedo, D., Mello Prado, R., Lizcano Toledo, R., Salas Aguilar, D., Claudio Nascimento dos Santos, L., Calero Hurtado, A., … Betancourt Aguilar, C. (2020). Physiological role of silicon in radish seedlings under ammonium toxicity. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.10587
dc.relation94. Oren A (2002) Diversity of halophilic microorganisms: enviroments,phylogeny, physiology and application. J Ind Microbiol Biotechnol 28:56–63
dc.relation95. Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8-9), 825–834. doi:10.1080/09593330903370026
dc.relation96. Pandey, A., Das, N., Kumar, B., Rinu, K., Trivedi, P. (2007). Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World Journal of Microbiology and Biotechnology, 24(1), 97–102. doi:10.1007/s11274-007-9444-1
dc.relation97. Parihar, P., Singh, S., Singh, R., Singh, V. P., Prasad, S. M. (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075. doi:10.1007/s11356-014-3739-1
dc.relation98. Parmar, S., Gharat, S. A., Tagirasa, R., Chandra, T., Behera, L., Dash, S. K., Shaw, B. P. (2020). Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLOS ONE, 15(4), e0230958. doi:10.1371/journal.pone.0230958
dc.relation99. Patil, R.H.; Patil, M.P.; Maheshwari, V.L. (2016) Bioactive Secondary Metabolites From Endophytic Fungi: A Review of Biotechnological Production and Their Potential Applications. Stud. Nat. Prod. Chem. 49, 189–205.
dc.relation100. Pazouki, M. & Felse, PA & Sinha, Jayashy & Panda, Tapobrata. (2000). Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose. Bioprocess Engineering. 22. 353-361. 10.1007/PL00009115.
dc.relation101. Penrose, D. M., Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. doi:10.1034/j.1399-3054.2003.00086.x
dc.relation102. Perrone, G., Gallo, A. (2016). Aspergillus Species and Their Associated Mycotoxins. Mycotoxigenic Fungi, 33–49. doi:10.1007/978-1-4939-6707-0_3
dc.relation103. Pi, HW., Anandharaj, M., Kao, YY. (2018). Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 8, 10850 https://doi.org/10.1038/s41598-018-29194-z
dc.relation104. Pikovskaya, R.I., (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17,362–370.
dc.relation105. Putti, F.F., J.F. Silva Junior, R. Ludwig, L.R.A. Gabriel Filho, C.P.Cremasco, and A.E. Klar. (2014). Avaliacao da cultura do rabanete ao longo do ciclo submetido em diferentes niveis de salinidade. J. Agron. Sci. 3(2), p. 80-90.
dc.relation106. Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295
dc.relation107. Ramos-G, J., Bustamante-Brito, R., Ángeles de Paz, G., Medina-Canales, M. G., Vásquez-Murrieta, M. S., Wang, E. T., Rodríguez-Tovar, A. V. (2016). Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Canadian Journal of Microbiology, 62(4), 307–319. doi:10.1139/cjm-2015-0226
dc.relation108. Romero A. (2020). Caracterización de microorganismos halófilos y halotolerantes con potencial actividad promotora de crecimiento vegetal de la mina de sal de Zipaquirá (Colombia). Tesis de pregrado. Universidad INCCA, Bogotá, Colombia.
dc.relation109. Sah, Stuti, Singh, Rajni. (2015) "Siderophore: Structural And Functional Characterisation – A Comprehensive Review" Agriculture (vol.61, no.3, 2015, pp.97-114. https://doi.org/10.1515/agri-2015-0015
dc.relation110. Salazar-Garcia G, Balaguera-Lopez HE, Hernandez JP.(2022). Effect of Plant Growth-Promoting Bacteria Azospirillum brasilense on the Physiology of Radish (Raphanus sativus L.) under Waterlogging Stress. Agronomy. 12(3):726. https://doi.org/10.3390/agronomy12030726
dc.relation111. Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, H. N. (2018). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology. doi:10.1016/j.apsoil.2018.09.012
dc.relation112. Shahid, S. A., Zaman, M., Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 43–53. doi:10.1007/978-3-319-96190-3
dc.relation113. Sharma, P.K., and D.O. Hall. (1991). Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant Physiol. 138:614–619.
dc.relation114. Shilev, S., Sancho, E. D., Benlloch-González, M. (2012). Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 95, S37–S41. doi:10.1016/j.jenvman.2010.07.019
dc.relation115. Shirinbayan, S., Khosravi, H., Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138-145. https://doi.org/10.1016/j.apsoil.2018.09.015
dc.relation116. Sidari M, Carmelo Mallamaci, Adele Muscolo (2008) Drought, salinity and heat differently affect seed germination of Pinus pinea, Journal of Forest Research, 13:5, 326-330, DOI: 10.1007/s10310-008-0086-4
dc.relation117. Signorelli, S. (2016). The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front.PlantSci.7:1339. doi: 10.3389/fpls.2016.01339
dc.relation118. Silambarasan S, Logeswari P, Vangnai AS, Cornejo P. (2022). Rhodotorula mucilaginosa CAM4 improved selenium uptake in Spinacia oleracea L. and soil enzymatic activities under abiotic stresses. Environ Sci Pollut Res Int. . doi: 10.1007/s11356-022-21935-y. Epub ahead of print. PMID: 35859235.
dc.relation119. Silambarasan, S., Logeswari, P., Cornejo, P., Kannan, V. R. (2018). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2018.10.016
dc.relation120. Sousa L, Basílio A, Da Silva T, De Moura J, Gonçalves A, De Melo J, Dias T. (2018). Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana, 36(3), 257–265. doi: 10.15446/agron.colomb.v36n3.74149
dc.relation121. Sreevidya, M., Gopalakrishnan, S., Melø, T. M., Simic, N., Bruheim, P., Sharma, M., … Alekhya, G. (2015). Biological control ofBotrytis cinereaand plant growth promotion potential byPenicillium citrinumin chickpea (Cicer arietinumL.). Biocontrol Science and Technology, 25(7), 739–755. doi:10.1080/09583157.2015.10104
dc.relation122. Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou(2004): Chlorophyll a Fluorescence. Pp. 321-362. Springer, Berlin.
dc.relation123. Taiz L, Zeiger E (2015) Plant physiology. 6th ed. Sinauer Associates, Sunderland, Massachusetts, 764 pp.
dc.relation124. Tanaka M, Taniguchi M, Morinaga T, Matsuno R, Kamikubo T (1980) Cellulase productivity of Eupenicillium javanicum. J Ferment Technol 58:149–154
dc.relation125. Tapia-Vázquez, I., Sánchez-Cruz, R., Arroyo-Domínguez, M., Lira-Ruan, V., Sánchez-Reyes, A., del Rayo Sánchez-Carbente, M., Padilla-Chacón, D., Batista-García, R. A., Folch-Mallol, J. L. (2020). Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano
dc.relation126. Teather, R., & Wood, P. (1982). Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied Environmental Microbiology, 43(4), 777–780.
dc.relation127. Ting, A. S. Y., Mah, S. W., Tee, C. S. (2012). Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biological Control, 61(2), 155–159. doi:10.1016/j.biocontrol.2012.01.010
dc.relation128. Vashisth A., S. Nagarajan. (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology ;167:149–156.
dc.relation129. Vassileva, M.; Malusá, E.; Eichler-Löbermann, B.; Vassilev, N. (2020) Aspegillus terreus: From Soil to Industry and Back. Microorganisms, 8, 1655. https://doi.org/10.3390/microorganisms8111655
dc.relation130. Venkatesh, J., Upadhyaya, C.P., Yu, J.W., Hemavathi, A., Kim, D.H., Strasser, R.J., Park, S.W. (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D- galacturonic acid reductase gene for salinity stress tolerance. -Hort. Environ. Biotechnol. 53: 320-328.
dc.relation131. Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, Vol. 8. (American Society of Plant Biologists), e0140. doi: 10.1199/tab.0140
dc.relation132. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.-M., Kim, J.-G., Lee, I.-J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example ofPenicillium citrinumandAspergillus terreus. Journal of Plant Interactions, 10(1), 280–287. doi:10.1080/17429145.2015.107974
dc.relation133. Yan J, Hiroyuki ITO, Hirokazu MATSUI, Mamoru HONMA (2000). 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Induced by ACC Synthesized and Accumulated in Penicillium citrinum Intracellular Spaces, Bioscience, Biotechnology, and Biochemistry, Volume 64, Issue 2, Pages 299–305, https://doi.org/10.1271/bbb.64.299
dc.relation134. Yang, S. F., and Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155–189. doi: 10.1146/annurev.pp.35.060184.001103
dc.relation135. Yedidia, I., Benhamou, N., Chet, I., (1999). Induction of defense responses in cucumber
dc.relation136. Yildirim E, Ertan T, Metin D (2008). Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth: Promoting rhizobacteria. Romanian Biotechnological Letters. 13. 3933-3943.
dc.relation137. Yin, J., Chen, J.-C., Wu, Q., Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33(7), 1433–1442. doi:10.1016/j.biotechadv.2014.1
dc.relation138. Yoo, S.J.; Shin, D.J.; Won, H.Y.; Song, J.; Sang, M.K (2018) Aspergillus terreus JF27 Promotes the Growth of Tomato Plants and Induces Resistance
dc.relation139. Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79–83. doi:10.1016/j.biocontrol.2008.09.
dc.relation140. Zhao, G. Q., Ma, B. L., Ren, C. Z. (2007). Growth, Gas Exchange, Chlorophyll Fluorescence, and Ion Content of Naked Oat in Response to Salinity. Crop Science, 47(1), 123. doi:10.2135/cropsci2006.06.0371
dc.relation141. Zushi, K., Kajiwara, S., Matsuzoe, (2012) Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. - Sci. Hort. 148: 39-46
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución