dc.contributor | Sánchez Nieves, Jimena | |
dc.contributor | Melgarejo Muñoz, Luz Marina | |
dc.contributor | Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos | |
dc.creator | Silva Velandia, Silvia Fernanda | |
dc.date.accessioned | 2023-06-26T19:44:20Z | |
dc.date.accessioned | 2023-08-25T13:35:16Z | |
dc.date.available | 2023-06-26T19:44:20Z | |
dc.date.available | 2023-08-25T13:35:16Z | |
dc.date.created | 2023-06-26T19:44:20Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84071 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8426989 | |
dc.description.abstract | El estrés abiótico por salinidad está asociado con detrimento del crecimiento vegetal, y por lo tanto con la productividad de los cultivos. Por lo que el uso de microorganismos que cuentan con mecanismos fitoestimuladores y de mejoramiento del estado nutricional de las plantas en condiciones de salinidad, surge como una posible solución ante el presente panorama de degradación de los suelos por salinización, debido al exceso de fertilizantes químicos y también como efecto del cambio climático. En la presente investigación se evaluó la potencial actividad de cuatro aislamientos fúngicos halotolerantes en la mitigación del estrés abiótico por salinidad y promoción de crecimiento vegetal en rábano (Raphanus sativus L.), a través de mecanismos como la producción de auxinas, solubilización de fosfatos y la actividad ACC desaminasa. Con base en las características morfológicas, y por medio del uso de claves taxonómicas, los hongos se identificaron preliminarmente como: Aspergillus terreus, Aspergillus fumigatus, Penicillium citrinum y Rhodotorula spp. El estudio constó de tres fases: 1) evaluación in vitro de algunos mecanismos de promoción del crecimiento vegetal, 2) evaluación del efecto de la inoculación de los hongos sobre la germinación In vitro de semillas de rábano; 3) evaluación del efecto de la inoculación sobre parámetros de crecimiento y fisiología de plantas de rábano bajo condiciones de invernadero, sometidas a salinidad en el agua de riego a 100 y 200 mM de NaCl. Las determinaciones de crecimiento, fluorescencia de la clorofila a, contenido de pigmentos y estado hídrico, se realizaron al final del bioensayo, en el tiempo de cosecha del rábano. Se encontró que, en general, la inoculación de los hongos tiene efectos positivos sobre el crecimiento y variables fisiológicas de las plantas de rábano sometidas a altas concentraciones de NaCl, siendo P. citrinum el que tuvo mayor efectividad en cuanto a su impacto positivo sobre las plantas. La mitigación del estrés registrada en plantas de rábano permite concluir que estos hongos o sus metabolitos podrían usarse en la formulación de biofertilizantes aplicables a cultivos sembrados en suelos salinos. (Texto tomado de la fuente). | |
dc.description.abstract | Abiotic stress due to salinity is associated with detriment of plant growth, and therefore with crop productivity. Therefore, the use of microorganisms that have phytostimulatory mechanisms and improve the nutritional status of plants under salinity conditions, emerges as a possible solution to the present scenario of soil degradation by salinization, due to the excess of chemical fertilizers and also as an effect of climate change. In the present investigation, the potential activity of four halotolerant fungal isolates in mitigating abiotic stress and promoting plant growth in radish (Raphanus sativus L.) was evaluated through mechanisms such as auxin production, phosphate and potassium solubilization, and ACC deaminase activity. Based on morphological characteristics, and through the use of taxonomic keys, the fungi were preliminarily identified as: Aspergillus terreus, Aspergillus fumigatus, Penicillium citrinum and Rhodotorula spp. The study consisted of three phases: 1) in vitro evaluation of some mechanisms of plant growth promotion; 2) evaluation of the effect of fungal inoculation on the in vitro germination of radish seeds; 3) evaluation of the effect of inoculation on growth and physiology parameters of radish plants under greenhouse conditions, subjected to salinity in irrigation water at 100 and 200 mM NaCl. Determinations of growth, chlorophyll a fluorescence, pigment content and water status were made at the end of the bioassay, at the time of radish harvest. It was found that, in general, fungal inoculation has positive effects on the growth and physiology of radish plants subjected to high NaCl concentrations, with P. citrinum being the most effective in terms of its positive impact on plants. The stress mitigation recorded in radish plants leads to the conclusion that these fungi or their metabolites could be used in the formulation of biofertilizers applicable to crops grown in saline soils. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Agrosavia | |
dc.relation | Agrovoc | |
dc.relation | 1. Abdel A., Mohammad A. Abbas, Amal A. Abdel Wahid, W. Paul Quick, Gaber M. Abogadallah, (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress, Journal of Experimental Botany, Volume 54, Issue 392. Pages 2553–2562, https://doi.org/10.1093/jxb/erg277 | |
dc.relation | 2. Abdel T.M.; Alawlaqi, M.M. (2018) Molecular Identification of Rhizospheric Thermo-Halotolerant Aspergillus terreus and Its Correlation to Sustainable Agriculture. BioResources Doi: 1380128023. | |
dc.relation | 3. Africano K, Pinzón E. (2014). Comportamiento fisiológico de plantas de rábano (Raphanus sativus L.) sometidas a estrés por salinidad. Conexión agropecuaria JDC 4(2), p 13-24. | |
dc.relation | 4. Ahima, J., Zhang, X., Yang, Q., Zhao, L., Maurice Tibiru, A., Zhang, H. (2019). Biocontrol activity of Rhodotorula mucilaginosa combined with salicylic acid against Penicillium digitatum infection in oranges. Biological Control. doi: 10.1016/j.biocontrol.2019.0 | |
dc.relation | 5. Ali, I., Khaliq, S., Sajid, S., Akbar, A. (2019). Biotechnological Applications of Halophilic Fungi: Past, Present, and Future. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, 291–306. doi:10.1007/978-3-030-19030-9_1 | |
dc.relation | 6. Ali, R., Gul, H., Hamayun, M., Rauf, M., Iqbal, A., Shah, M., Hussain, A., Bibi, H., Lee, I.-J. (2021). Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/s40538-021-00208-9 | |
dc.relation | 7. Asaf, S.; Hamayun, M.; Khan, A.L.; Waqas, M.; Khan, M.A.; Jan, R.; Lee, I.J.; Hussain, A (2018). Salt tolerance of Glycine max. L induced
by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol.
Biochem, 128, 13–23. | |
dc.relation | 8. Ashraf, M., Shahzad, S. M., Imtiaz, M., Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen
metabolizing enzymes: A review. J. Plant Nutr. 41, 1065–1081. doi: 10.1016/
j. crvi.2009.03.009 | |
dc.relation | 9. Asif M, Anwar H, Muhammad I, Naeem K, Muhammad H, Ismail Sahib Gul Afridi, In-Jung Lee (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish, Journal of Plant Interactions, 13:1, 532-542, DOI: 10.1080/17429145.2018.1542041 | |
dc.relation | 10. Ayyub CM, Shaheen MR, Raza S, Yaqoob MS, Qadri RWK, Azam M, Ghani MA, Khan I, Akhtar N (2016). Evaluation of different radish (Raphanus sativus) genotypes under different saline regimes. American Journal of Plant Sciences 7(6):894-898. DOI: http://dx.doi.org/10.4236/ajps.2016.76084 | |
dc.relation | 11. Badawy, A.A.; Alotaibi, M.O.; Abdelaziz, A.M.; Osman, M.S.; Khalil, A.M.A.; Saleh, A.M.; Mohammed, A.E.; Hashem, A.H (2021) Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites , 11, 428. https://doi.org/10.3390/metabo11070428 | |
dc.relation | 12. Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222. doi:10.1016/j.chemosphere.2018 | |
dc.relation | 13. Beltagi, S., mohamed, A., Rashed, m. M. (2010). Response of Antioxidative Enzymes to Cadmium Stress in Leaves and Roots of Radish (Raphanus sativus L.). Notulae Scientia Biologicae, 2(4), 76-82. https://doi.org/10.15835/nsb245395 | |
dc.relation | 14. Bernstein, N. (2019). Plants and salt: Plant response and adaptations to salinity. Model Ecosystems in Extreme Environments, 101–112. doi:10.1016/b978-0-12-812742-1.00005-2 | |
dc.relation | 15. Bibi, S., Hussain, A., Hamayun, M., Rahman, H., Iqbal, A., Shah, M., … Islam, B. (2018). Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere, 211, 653–663. doi:10.1016/j.chemosphere.2018. | |
dc.relation | 16. Bonilla M (2005). Estrategias adaptativas de plantas del páramo y del bosque altoandino en la Cordillera Oriental de Colombia. Colección Textos . Universidad Nacional de Colombia - Unibiblos, Bogotá. p 177-190. | |
dc.relation | 17. Boughalleb, N., Salem, I. B., M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1). doi:10.1186/s41938-017-0010-3 | |
dc.relation | 18. Brotman, Y., Landau, U., Cuadros-Inostroza, A., Tohge, T., Fernie, A. R., Chet, I., et al. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9:e1003221. doi: 10.1371/journal.ppat.1003221 | |
dc.relation | 19. Callejas, R., Kania, E., Contreras, A., Peppi, C., Morales, L. (2013). Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 31(4), 19–26. https://doi.org/10.4067/S0718-34292013000400003 | |
dc.relation | 20. Calvente, V., de Orellano, M. E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M. I. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226–229. doi:10.1038/sj.jim.7000117 | |
dc.relation | 21. Cao, W. H., Liu, J., He, X. J., Mu, R. L., Zhou, H. L., Chen, S. Y., et al. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707–719. doi: 10.1104/pp.106.094292 | |
dc.relation | 22. Casares. E. (1981). Producción de hortalizas. Tercera edición. San José Costa Rica. Pág. 272-275 | |
dc.relation | 23. Chammoun N, Geller D, Das K (2013). Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel. Industrial Crops and Products, 45, 155–159. https://doi.org/10.1016/j.indcrop.2012.11.029 | |
dc.relation | 24. Cheng, Z., Chi, M., Li, G., Chen, H., Sui, Y., Sun, H. Liu, J. (2016). Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 95, 49–56. doi:10.1016/j.biocontrol.2016.01.001 | |
dc.relation | 25. Dallas JE (2000) Metodos multivariados aplicados al analisis de datos.Mexico: Thomson Paraninfo S.A. | |
dc.relation | 26. Dassarma, Priya, Coker, James Huse, Valerie Dassarma, Shiladitya. (2010). Halophiles, Industrial Applications. 10.1002/9780470054581.eib439. | |
dc.relation | 27. De Lucca, A.J (2007). Harmful Fungi in Both Agriculture and Medicine. Rev. Iberoam. Micol. 24, 3–13. | |
dc.relation | 28. DIONISIO-SESE, M.L.; TOBITA, S (2000) Effect of salinity on sodium content and photosynthetic responses of rice seedling differing in salt tolerance. Journal of Plant Physiology, v.157, p.54- 58. | |
dc.relation | 29. Elgharably, A., Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere, 18, 100345. doi:10.1016/j.rhisph.2021.10034 | |
dc.relation | 30. Esquivel R., Gavilanes-Ruiz, M., Cruz-Ortega, R. y Huante, P. (2013). Importancia agrobiotecnoló-gica de la enzima ACC desaminasa en rizobac-terias, una revisión. Revista Fitotecnia Mexicana, 36(3), 251-258. | |
dc.relation | 31. Etesami, H., Emami, S., Alikhani, H. A.. (2017). Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬A review. Journal of soil science and plant nutrition, 17(4), 897-911. https://dx.doi.org/10.4067/S0718-95162017000400005 | |
dc.relation | 32. Firrincieli, A., Otillar, R., Salamov, A., Schmutz, J., Khan, Z., Redman, R. S. Doty, S. L. (2015). Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00978 | |
dc.relation | 33. Gaballah M.S. , Gomaa A.M., (2004). Performance of Faba Bean Varieties Grown under Salinity Stress and Biofertilized with Yeast. Journal of Applied Sciences, 4: 93-99.DOI: 10.3923/jas.2004.93.99 | |
dc.relation | 34. Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Corrêa, B. O., da Silva Brasil, M., Zanoelo, F. F. (2021). Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere, 18, 100332. https://doi.org/10.1016/j.rhisph.2021.100332 | |
dc.relation | 35. García, Adriana, Rhoden, Sandro A, Rubin Filho, Celso J, Nakamura, Celso V, Pamphile, João A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L . and their localization by scanning electron microscopy. Biological Research, 45(2), 139-148. https://dx.doi.org/10.4067/S0716-97602012000200006 | |
dc.relation | 36. Ghilardi, C., Sanmartin Negrete, P., Carelli, A. A., Borroni, V. (2020). Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing, 7(1). doi:10.1186/s40643-020-00341-7 | |
dc.relation | 37. Gomaa, A.M. Gaballah M. S., Hazaa M.M. (2005). Changes in Compatible Solutes of Some Maize Varieties Grown in Sandy
Soil and Biofertilized with Rhodotorula glutinis under Saline Conditions. Journal of Applied Sciences Research 1(5): 347-351, 2005 | |
dc.relation | 38. Gómez L. (2011). Evaluación del cultivo de rábano (Raphanus sativus L.) bajo diferentes condiciones de fertilización orgánica e inorgánica. Universidad Autónoma Agraria Antonio Narro. México. | |
dc.relation | 39. Gopinath, S. C. B., Hilda, A., Anbu, P. (2005). Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience, 46(2), 119–126. doi:10.1007/s10267-004-0221-9 | |
dc.relation | 40. Gunde, N., Ramos, J., Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological Research, 113(11), 1231–1241. doi:10.1016/j.mycres.2009.09.002 | |
dc.relation | 41. Hadas, A (1977). Water uptake and germination of leguminous seeds in soils of changing matrix and osmotic water potential. Journal of Experimental Botany, v.28, p.977-985. | |
dc.relation | 42. Hakim Safinah, and Tri W. Yuwati. (2020). "The Use of Fungal Endophyte Penicillium Citrinum On Tree Seedling: Applicability and Limitation." BIO web of conferences, v. 20 ,. pp. 03005. doi: 10.1051/bioconf/20202003005 | |
dc.relation | 43. Hamedi, J., Mohammadipanah, F., Ventosa, A. (2012). Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 17(1), 1–13. doi:10.1007/s00792-012-0493-5 | |
dc.relation | 44. Hossain, M. M., Sultana, F., Islam, S. (2017). Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives, 135–191. doi:10.1007/978-981-10-6593-4_6 | |
dc.relation | 45. Hsieh, E. J., Cheng, M. C., and Lin, T. P. (2013). Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 82, 223–237. doi: 10.1007/s11103-013-0054-z | |
dc.relation | 46. Ibrar, M., Ullah, M. W., Manan, S., Farooq, U., Rafiq, M., Hasan, F. (2020). Fungi from the extremes of life: an untapped treasure for bioactive compounds. Applied Microbiology and Biotechnology. doi:10.1007/s00253-020-10399-0 | |
dc.relation | 47. IDEAM. (2017). Mapa Nacional de degradación de suelos por salinización. Recuperado de: http://www.ideam.gov.co/documents/24277/69989379/Lanzamiento+mapa+Salinizacion+FN+OPT.pdf/624515d0-799d-41ef-b1ef-bb7e868680f3 | |
dc.relation | 48. Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302–318. doi:10.3103/s0095452712050040 | |
dc.relation | 49. Islam, N.F. Borthakur SK. (2012). Screening of mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology Quarantine — Doi 10.5943/ppq/2/1/11 | |
dc.relation | 50. Islam, S., Akanda, A. M., Sultana, F., Hossain, M. M. (2013). Chilli rhizosphere fungusAspergillusspp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Archives Of Phytopathology And Plant Protection, 47(10), 1231–1238. doi:10.1080/03235408.2013.83763 | |
dc.relation | 51. Jafarinia, Mojtaba Shariati, Mahmoud. (2012). Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. Iranian Journal of Science and Technology, Transaction A: Science. 36. 73-76. | |
dc.relation | 53. Javed, A., Khan, S.A., Shah, A.H., Hussain, A., Shinwari, Z.K. (2020). Potential of endophytic fungus aspergillus terreus as potent plant growth promoter. Pakistan Journal of Botany, 52(3), 1083-1086. | |
dc.relation | 54. Kasim, W.A., K.M. Saad-Allah and M. Hamouda, (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). Int. J. Agric. Biol., 18: 653‒660 | |
dc.relation | 55. Khan MI, Ali N, Jan G, Hamayun M, Jan FG, Iqbal A, Hussain A, Lee IJ (2022). Salt Stress Alleviation in Triticum aestivum Through Primary and Secondary Metabolites Modulation by Aspergillus terreus BTK-1. Front Plant Sci. Mar 10;13:779623. doi: 10.3389/fpls.2022.779623. PMID: 35360328; PMCID: PMC8960994. | |
dc.relation | 56. Khan SA, Hamayun M, Hyeokjun Y, Kim H, Suh S, Hwang S, Kim J, Lee I, Choo Y,YoonU, et al. (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8:231. | |
dc.relation | 57. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, I.-J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852–861. doi:10.1016/j.plaphy.2011.03.005 | |
dc.relation | 58. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, J.-H., Lee, I.-J. (2011). Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochemistry, 46(2), 440–447. doi:10.1016/j.procbio.2010.09.0 | |
dc.relation | 59. Khan, M. S., Zaidi, A., Ahmad, E. (2014). Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. Phosphate Solubilizing Microorganisms, 31–62. doi:10.1007/978-3-319-08216-5_2 | |
dc.relation | 60. Khushdil, F., Jan, F. G., Jan, G., Hamayun, M., Iqbal, A., Hussain, A., Bibi, N. (2019). Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus L. Plant Physiology and Biochemistry, 144, 127–134. doi:10.1016/j.plaphy.2019.09.038 | |
dc.relation | 61. KURAMATA, M., FUJIOKA, S., SHIMADA, A., KAWANO, T., KIMURA, Y. (2007). Citrinolactones A, B and C, and Sclerotinin C, Plant Growth Regulators fromPenicillium citrinum. Bioscience, Biotechnology, and Biochemistry, 71(2), 499–503. doi:10.1271/bbb.60538 | |
dc.relation | 62. Kurjogi, K.N. Basavesha, V.P. Savalgi (2021) Impact of potassium solubilizing fungi as biopesticides and its role in crop improvement, Biocontrol Agents and Secondary Metabolites. https://doi.org/10.1016/B978-0-12-822919-4.00002-8. | |
dc.relation | 63. Kurtzman C.P., J.W. Fell, Teun Boekhout (2011). The Yeast A taxonomic study. Elsevier. P 1973-1906. | |
dc.relation | 64. Li X, Zhao C, Zhang T, Wang G,Amombo E, Xie Y and Fu J (2021)Exogenous Aspergillus aculeatusEnhances Drought and HeatTolerance of Perennial Ryegrass.Front. Microbiol. 12:593722.doi: 10.3389/fmicb.2021.593722 | |
dc.relation | 65. Lian, B., Wang, B., Pan, M., Liu, C., Teng, H. H. (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72(1), 87–98. doi:10.1016/j.gca.2007.10.005 | |
dc.relation | 66. Liu, Z.; Cheng, R.; Xiao, W.; Guo, Q.; Wang, N. (2014) Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9, 1–9. | |
dc.relation | 67. Lubna, Asaf, S., Hamayun, M., Khan, A. L., Waqas, M., Khan, M. A., … Hussain, A. (2018). Salt tolerance of Glycine max .L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiology and Biochemistry, 128, 13–23. doi:10.1016/j.plaphy.2018.05.00 | |
dc.relation | 68. Lugtenberg B, Kamilova F. (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol.;63:541-56. doi: 10.1146/annurev.micro.62.081307.162918. PMID: 19575558. | |
dc.relation | Ma Y. , Erwin A. Galinski , William D. Grant , Aharon Oren , and Antonio Ventosa (2010) Halophiles 2010: Life in Saline Environments. ASM journals. Doi: https://doi.org/10.1128/AEM.01868-10 | |
dc.relation | 70. Machuca, A., Milagres, A. M. F. (2003). Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Letters in Applied Microbiology, 36(3), 177–181. doi:10.1046/j.1472-765x.2003.012 | |
dc.relation | 71. Maheshwari, D. K., Saraf, M. (2015). Halophiles. Sustainable Development and Biodiversity. doi:10.1007/978-3-319-14595-2 | |
dc.relation | 72. Marcelis, L., Van Hooijdonk, J. (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil 215, 57–64. https://doi.org/10.1023/A:1004742713538. | |
dc.relation | 73. Mathur, P., Chaturvedi, P., Sharma, C. (2022). Improved seed germination and plant growth mediated by compounds synthesized by endophytic Aspergillus niger (isolate 29) isolated from Albizia lebbeck (L.) Benth. 3 Biotech 12, 271. https://doi.org/10.1007/s13205-022-03332-x | |
dc.relation | 74. Maxwell, K.; Johnson, G (2000). Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668 | |
dc.relation | 75. Melgarejo L. (2010) Libro de experimentos en fisiología vegetal. Universidad Nacional de Colombia. 1ra ed. Bogotá, Colombia. | |
dc.relation | 76. Membrillera, José (1950). Clave determinativa de las especies del género penicillium. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/6407 | |
dc.relation | 77. Membrillera, José (1951). Clave determinativa de las especies del género aspergillus. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/6407 | |
dc.relation | 78. Mendes, G.O.; Galvez, A.; Vassileva, M.; Vassilev, N (2017). Fermentation Liquid Containing Microbially
Solubilized P Significantly Improved Plant Growth and P Uptake in Both Soil and Soilless Experiments.
Appl. Soil Ecol. 2017, 117, 208–211 | |
dc.relation | 79. Mittal, V., Singh, O., Nayyar, H., Kaur, J., Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40(3), 718–727. doi:10.1016/j.soilbio.2007.10.0 | |
dc.relation | 80. Mohamed, H. M., El-Homosy, R. F., Abd-Ellatef, A.-E. H., Salh, F. M., Hussein, M. Y. (2016). Identification of Yeast Strains Isolated from Agricultural Soils for Releasing Potassium-bearing Minerals. Geomicrobiology Journal, 34(3), 261–266. doi:10.1080/01490451.2016.11867 | |
dc.relation | 81. Monica Boscaiu, Cristina Lull, Josep Llinares, Oscar Vicente, Herminio Boira (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species, Journal of Plant Ecology, Volume 6, Issue 2, Pages 177–186, https://doi.org/10.1093/jpe/rts017 | |
dc.relation | 82. Moreno-C, Lina Margarita, López-Casallas, Marcela, Cruz Barrera, Fredy Mauricio. (2021). Phosphate solubilization by Burkholderia species isolated from Oxisols from the Colombian high plains. Ciencia y Tecnología Agropecuaria, 22(2), Epub May 01, 2021.https://doi.org/10.21930/rcta.vol22_num2_art:1897 | |
dc.relation | 83. Moukhtari, A., Cabassa-Hourton, C., Farissi, M., Savouré, A. (2020). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.01127 | |
dc.relation | 84. Moukhtari, A., Farissi, M., Savouré, A. (2019). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.01127 | |
dc.relation | 85. Mrudula S, Murugammal R. (2011) Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. Jul;42(3):1119-27. doi: 10.1590/S1517-838220110003000033. Epub 2011 Sep 1. PMID: 24031730; PMCID: PMC3768773. | |
dc.relation | 86. Mujica Y, Sales J. (2013). Funcionamiento de la inoculación líquida con hongos micorrízicos arbusculares (HMA) en plantas de tomate (Solanum lycopersicum L.). Cultivos Tropicales, 34(4), 5-8. Recuperado en 16 de noviembre de 2020, de http://scielo.sld.cu/scielo.php?script=sci_arttext pid=S0258-59362013000400001 lng=es tlng=es. | |
dc.relation | 87. Mundra, S., Arora, R., Stobdan, T. (2011). Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World Journal of Microbiology and Biotechnology, 27(10), 2387–2396. doi:10.1007/s11274-011-0708-4 | |
dc.relation | 88. Murali, M., Sudisha, J., Amruthesh, K. N., Ito, S.-I., Shetty, H. S. (2012). Rhizosphere fungusPenicillium chrysogenumpromotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology, 15(1), 111–118. doi:10.1111/j.1438-8677.2012.00617.x | |
dc.relation | 89. Muthukumarasamy, M., Gupta, S.D. Panneerselvam, R. (2000) Influence of Triadimefon on the Metabolism of NaCl Stressed Radish. Biologia Plantarum 43, 67–72. https://doi.org/10.1023/A:1026503013445 | |
dc.relation | 90. Netondo, G. W., Onyango, J. C., Beck, E. (2004). Sorghum and Salinity. Crop Science, 44(3), 806. doi:10.2135/cropsci2004.8060 | |
dc.relation | 91. Niehus, R., Picot, A., Oliveira, N. M., Mitri, S., Foster, K. R. (2017). The evolution of siderophore production as a competitive trait. Evolution, 71(6), 1443–1455. doi:10.1111/evo.13230 | |
dc.relation | 92. Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. (2009) Biotechnological Production of Itaconic Acid and Its Biosynthesis
in Aspergillus terreus. App. Microbiol. Biotechnol. 84, 597–606. | |
dc.relation | 93. Olivera Viciedo, D., Mello Prado, R., Lizcano Toledo, R., Salas Aguilar, D., Claudio Nascimento dos Santos, L., Calero Hurtado, A., … Betancourt Aguilar, C. (2020). Physiological role of silicon in radish seedlings under ammonium toxicity. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.10587 | |
dc.relation | 94. Oren A (2002) Diversity of halophilic microorganisms: enviroments,phylogeny, physiology and application. J Ind Microbiol Biotechnol 28:56–63 | |
dc.relation | 95. Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8-9), 825–834. doi:10.1080/09593330903370026 | |
dc.relation | 96. Pandey, A., Das, N., Kumar, B., Rinu, K., Trivedi, P. (2007). Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World Journal of Microbiology and Biotechnology, 24(1), 97–102. doi:10.1007/s11274-007-9444-1 | |
dc.relation | 97. Parihar, P., Singh, S., Singh, R., Singh, V. P., Prasad, S. M. (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075. doi:10.1007/s11356-014-3739-1 | |
dc.relation | 98. Parmar, S., Gharat, S. A., Tagirasa, R., Chandra, T., Behera, L., Dash, S. K., Shaw, B. P. (2020). Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLOS ONE, 15(4), e0230958. doi:10.1371/journal.pone.0230958 | |
dc.relation | 99. Patil, R.H.; Patil, M.P.; Maheshwari, V.L. (2016) Bioactive Secondary Metabolites From Endophytic Fungi: A Review
of Biotechnological Production and Their Potential Applications. Stud. Nat. Prod. Chem. 49, 189–205. | |
dc.relation | 100. Pazouki, M. & Felse, PA & Sinha, Jayashy & Panda, Tapobrata. (2000). Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose. Bioprocess Engineering. 22. 353-361. 10.1007/PL00009115. | |
dc.relation | 101. Penrose, D. M., Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. doi:10.1034/j.1399-3054.2003.00086.x | |
dc.relation | 102. Perrone, G., Gallo, A. (2016). Aspergillus Species and Their Associated Mycotoxins. Mycotoxigenic Fungi, 33–49. doi:10.1007/978-1-4939-6707-0_3 | |
dc.relation | 103. Pi, HW., Anandharaj, M., Kao, YY. (2018). Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 8, 10850 https://doi.org/10.1038/s41598-018-29194-z | |
dc.relation | 104. Pikovskaya, R.I., (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17,362–370. | |
dc.relation | 105. Putti, F.F., J.F. Silva Junior, R. Ludwig, L.R.A. Gabriel Filho, C.P.Cremasco, and A.E. Klar. (2014). Avaliacao da cultura do rabanete ao longo do ciclo submetido em diferentes niveis de salinidade. J. Agron. Sci. 3(2), p. 80-90. | |
dc.relation | 106. Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014)
Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295 | |
dc.relation | 107. Ramos-G, J., Bustamante-Brito, R., Ángeles de Paz, G., Medina-Canales, M. G., Vásquez-Murrieta, M. S., Wang, E. T., Rodríguez-Tovar, A. V. (2016). Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Canadian Journal of Microbiology, 62(4), 307–319. doi:10.1139/cjm-2015-0226 | |
dc.relation | 108. Romero A. (2020). Caracterización de microorganismos halófilos y halotolerantes con potencial actividad promotora de crecimiento vegetal de la mina de sal de Zipaquirá (Colombia). Tesis de pregrado. Universidad INCCA, Bogotá, Colombia. | |
dc.relation | 109. Sah, Stuti, Singh, Rajni. (2015) "Siderophore: Structural And Functional Characterisation – A Comprehensive Review" Agriculture (vol.61, no.3, 2015, pp.97-114. https://doi.org/10.1515/agri-2015-0015 | |
dc.relation | 110. Salazar-Garcia G, Balaguera-Lopez HE, Hernandez JP.(2022). Effect of Plant Growth-Promoting Bacteria Azospirillum brasilense on the Physiology of Radish (Raphanus sativus L.) under Waterlogging Stress. Agronomy. 12(3):726. https://doi.org/10.3390/agronomy12030726 | |
dc.relation | 111. Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, H. N. (2018). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology. doi:10.1016/j.apsoil.2018.09.012 | |
dc.relation | 112. Shahid, S. A., Zaman, M., Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 43–53. doi:10.1007/978-3-319-96190-3 | |
dc.relation | 113. Sharma, P.K., and D.O. Hall. (1991). Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant Physiol. 138:614–619. | |
dc.relation | 114. Shilev, S., Sancho, E. D., Benlloch-González, M. (2012). Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 95, S37–S41. doi:10.1016/j.jenvman.2010.07.019 | |
dc.relation | 115. Shirinbayan, S., Khosravi, H., Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138-145. https://doi.org/10.1016/j.apsoil.2018.09.015 | |
dc.relation | 116. Sidari M, Carmelo Mallamaci, Adele Muscolo (2008) Drought, salinity and heat differently affect seed germination of Pinus pinea, Journal of Forest Research, 13:5, 326-330, DOI: 10.1007/s10310-008-0086-4 | |
dc.relation | 117. Signorelli, S. (2016). The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front.PlantSci.7:1339. doi: 10.3389/fpls.2016.01339 | |
dc.relation | 118. Silambarasan S, Logeswari P, Vangnai AS, Cornejo P. (2022). Rhodotorula mucilaginosa CAM4 improved selenium uptake in Spinacia oleracea L. and soil enzymatic activities under abiotic stresses. Environ Sci Pollut Res Int. . doi: 10.1007/s11356-022-21935-y. Epub ahead of print. PMID: 35859235. | |
dc.relation | 119. Silambarasan, S., Logeswari, P., Cornejo, P., Kannan, V. R. (2018). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2018.10.016 | |
dc.relation | 120. Sousa L, Basílio A, Da Silva T, De Moura J, Gonçalves A, De Melo J, Dias T. (2018). Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana, 36(3), 257–265. doi: 10.15446/agron.colomb.v36n3.74149 | |
dc.relation | 121. Sreevidya, M., Gopalakrishnan, S., Melø, T. M., Simic, N., Bruheim, P., Sharma, M., … Alekhya, G. (2015). Biological control ofBotrytis cinereaand plant growth promotion potential byPenicillium citrinumin chickpea (Cicer arietinumL.). Biocontrol Science and Technology, 25(7), 739–755. doi:10.1080/09583157.2015.10104 | |
dc.relation | 122. Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou(2004): Chlorophyll a Fluorescence. Pp. 321-362. Springer, Berlin. | |
dc.relation | 123. Taiz L, Zeiger E (2015) Plant physiology. 6th ed. Sinauer Associates, Sunderland, Massachusetts, 764 pp. | |
dc.relation | 124. Tanaka M, Taniguchi M, Morinaga T, Matsuno R, Kamikubo T (1980)
Cellulase productivity of Eupenicillium javanicum. J Ferment
Technol 58:149–154 | |
dc.relation | 125. Tapia-Vázquez, I., Sánchez-Cruz, R., Arroyo-Domínguez, M., Lira-Ruan, V., Sánchez-Reyes, A., del Rayo Sánchez-Carbente, M., Padilla-Chacón, D., Batista-García, R. A., Folch-Mallol, J. L. (2020). Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano | |
dc.relation | 126. Teather, R., & Wood, P. (1982). Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied Environmental Microbiology, 43(4), 777–780. | |
dc.relation | 127. Ting, A. S. Y., Mah, S. W., Tee, C. S. (2012). Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biological Control, 61(2), 155–159. doi:10.1016/j.biocontrol.2012.01.010 | |
dc.relation | 128. Vashisth A., S. Nagarajan. (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology ;167:149–156. | |
dc.relation | 129. Vassileva, M.; Malusá, E.; Eichler-Löbermann, B.; Vassilev, N. (2020) Aspegillus terreus: From Soil to Industry and Back. Microorganisms, 8, 1655. https://doi.org/10.3390/microorganisms8111655 | |
dc.relation | 130. Venkatesh, J., Upadhyaya, C.P., Yu, J.W., Hemavathi, A., Kim, D.H., Strasser, R.J., Park, S.W. (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D- galacturonic acid reductase gene for salinity stress tolerance. -Hort. Environ. Biotechnol. 53: 320-328. | |
dc.relation | 131. Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, Vol. 8. (American Society of Plant Biologists), e0140. doi: 10.1199/tab.0140 | |
dc.relation | 132. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.-M., Kim, J.-G., Lee, I.-J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example ofPenicillium citrinumandAspergillus terreus. Journal of Plant Interactions, 10(1), 280–287. doi:10.1080/17429145.2015.107974 | |
dc.relation | 133. Yan J, Hiroyuki ITO, Hirokazu MATSUI, Mamoru HONMA (2000). 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Induced by ACC Synthesized and Accumulated in Penicillium citrinum Intracellular Spaces, Bioscience, Biotechnology, and Biochemistry, Volume 64, Issue 2, Pages 299–305, https://doi.org/10.1271/bbb.64.299 | |
dc.relation | 134. Yang, S. F., and Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155–189. doi: 10.1146/annurev.pp.35.060184.001103 | |
dc.relation | 135. Yedidia, I., Benhamou, N., Chet, I., (1999). Induction of defense responses in cucumber | |
dc.relation | 136. Yildirim E, Ertan T, Metin D (2008). Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth: Promoting rhizobacteria. Romanian Biotechnological Letters. 13. 3933-3943. | |
dc.relation | 137. Yin, J., Chen, J.-C., Wu, Q., Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33(7), 1433–1442. doi:10.1016/j.biotechadv.2014.1 | |
dc.relation | 138. Yoo, S.J.; Shin, D.J.; Won, H.Y.; Song, J.; Sang, M.K (2018) Aspergillus terreus JF27 Promotes the Growth of Tomato
Plants and Induces Resistance | |
dc.relation | 139. Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79–83. doi:10.1016/j.biocontrol.2008.09. | |
dc.relation | 140. Zhao, G. Q., Ma, B. L., Ren, C. Z. (2007). Growth, Gas Exchange, Chlorophyll Fluorescence, and Ion Content of Naked Oat in Response to Salinity. Crop Science, 47(1), 123. doi:10.2135/cropsci2006.06.0371 | |
dc.relation | 141. Zushi, K., Kajiwara, S., Matsuzoe, (2012) Chlorophyll a fluorescence OJIP transient as a tool to characterize and
evaluate response to heat and chilling stress in tomato leaf and fruit. - Sci. Hort. 148: 39-46 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes | |
dc.type | Trabajo de grado - Maestría | |