dc.contributorMartínez Martínez, Luis Joel
dc.creatorFranco Montoya, Oscar Hernán
dc.date.accessioned2023-08-01T17:06:55Z
dc.date.accessioned2023-08-25T13:33:48Z
dc.date.available2023-08-01T17:06:55Z
dc.date.available2023-08-25T13:33:48Z
dc.date.created2023-08-01T17:06:55Z
dc.date.issued2023-07
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84395
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426986
dc.description.abstractLa presente investigación se realizó en rosa cultivada bajo invernaderos ubicada en el municipio de Tocancipá departamento de Cundinamarca, con el objetivo de evaluar la relación entre la reflectancia y el contenido de manganeso en comparación con el análisis químico del tejido foliar, para enfocarlo en la nutrición vegetal en el cultivo de rosa variedad Freedom. Se utilizó un diseño experimental de bloques completos al azar, con cinco tratamientos de diferentes dosis de manganeso y cinco repeticiones. Se realizaron cinco muestreos, para cada muestreo se analizaron 10 plantas por tratamiento para un total de 50 plantas por muestreo y de cada planta se tomaron respuestas espectrales a 10 foliolos con el espectroradiómetro FieldSpect4. En cada uno de los muestreos se capturaron imágenes con tres cámaras Nikon en diferentes bandas (rojo, azul, verde, RedEdge e infrarrojo) adaptadas a una plataforma móvil y se realizaron análisis de contenidos foliares en laboratorio; Los resultados mostraron que a menores concentraciones de manganeso en tejido foliar los valores de reflectancia fueron más altos, los índices de vegetación que presentaron las mejores correlaciones fueron GNDVI, DATT4, DATT2, y D1, siendo el GNDVI el de los mejores resultados. Se realizaron modelos predictivos con las técnicas regresión PLSR y PCR, se encontró que las correcciones del espectro mejoran la precisión y solidez de la predicción, siendo SG-NR-PLSR y NR-PLSR los modelos con mejores valoraciones para las métricas (R2, RMSE y RDP), Las reflectancias que mayor incidencia tuvieron en el espectro fueron a los 523nm, 557nm y cerca a los 720nm, estás regiones tuvieron correlaciones mayores a 0.6 con la concentración de Mn. Por otra parte, se encontró una correlación moderada entre el índice OSAVI y la concentración de manganeso para las imágenes tomadas desde plataforma móvil, siendo mejores los resultados obtenidos con el espectroradiómetro. (Texto tomado de la fuente)
dc.description.abstractThe present investigation was carried out in cultivated roses under greenhouses located in the municipality of Tocancipá department of Cundinamarca, to evaluate the relationship between reflectance and manganese content in comparison with the chemical analysis of leaf tissue, to focus on plant nutrition in the cultivation of Freedom variety rose. A randomized complete block experimental design was used, with five treatments of different doses of manganese and five repetitions. Five samplings were carried out, for each sampling 10 plants per treatment were analyzed for a total of 50 plants per sampling, and spectral responses to 10 leaflets were taken from each plant with the FieldSpect4 spectroradiometer. In each of the samplings, images were captured with three Nikon cameras in different bands (red, blue, green, RedEdge, and infrared) adapted to a mobile platform and leaf content analyzes were performed in the laboratory; the results found showed that at lower concentrations of manganese in leaf tissue, the reflectance values were higher, and the vegetation indices that presented the best correlations were GNDVI ,DATT4, DATT2, and D1, with GNDVI being the one with the best results. Predictive models were performed with the PLSR and PCR regression approaches, it was found that the spectrum corrections improve the accuracy and robustness of the prediction, with SG-NR-PLSR and NR-PLSR being the models with the best ratings for the metrics (R2, RMSE, and RDP). The reflectances that had the highest incidence in the spectrum were at 523nm, 557nm and close to 720nm., these regions had correlations greater than 0.6 with the concentration of Mn. On the other hand, a moderate correlation was found between the OSAVI index and the manganese concentration for the images taken from the mobile platform, being better the results obtained with the spectroradiometer.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Maestría en Geomática
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá,Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlejandro, S., Höller, S., Meier, B., & Peiter, E. (2020). Manganese in Plants: From Acquisition to Subcellular Allocation. In Frontiers in Plant Science (Vol. 11). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.00300
dc.relationÁngel López, Y. B. (2012). Metodología para identificar cultivos de coca mediante análisis de parámetros red edge y espectroscopia de imágenes. 1–87.
dc.relationArsham, H. (n.d.). BARTLETT’S TEST Miodrag Lovric. http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/BartletTest.htm
dc.relationBedin Marin, D., Araújo Silva Ferraz, G., Henrique Sales Guimarães, P., Schwerz, F., Santos Santana, L., Dienevam Souza Barbos a, B., Alexandre Pena Barata, R., de Oliveira Faria, R., Ellen Lima Dias, J., Conti, L., Rossi, G., Fernandez-Gallego, J. A., Roldán-Ruiz, I., Lootens, P., & Kefauver, S. C. (2021). Remotely Piloted Aircraft and Random Forest in the Evaluation of the Spatial Variability of Foliar Nitrogen in Coffee Crop. https://doi.org/10.3390/rs
dc.relationB.K. DUBE, N. K. A. C. C. (2002). SHORT COMMUNICATION YIELD , PHYSIOLOGY AND PRODUCTIVITY OF RICE UNDER MANGANESE STRESS. 7(4), 392–395.
dc.relationBotero, J. M. (2009). Determinación del nivel foliar de nutrientes mediante espectroscopia de reflectancia. 2–115. https://doi.org/10.4067/S0071-17132000003500023
dc.relationBW Hariyadi, F Nizak, IR Nurmalasari, Y. K. (2019). Effect of Dose And Time of Npk Fertilizer Application on The Growth And Yield of Tomato Plants. Agricultural Science, 3.
dc.relationCamacho Tamayo, J. H. (2013). Uso de la reflectancia difusa -NIR en la determinación de características físicas y químicas de un Oxisol. Carimagüa -Meta. Universidad Nacional de Colombia. Sede Bogotá., 149. http://www.bdigital.unal.edu.co/11558/
dc.relationCámara de comercio de Bogotá. (n.d.). 2015 PROGRAMA DE APOYO AGRÍCOLA Y AGROINDUSTRIAL VICEPRESIDENCIA DE FORTALECIMIENTO EMPRESARIAL CÁMARA DE COMERCIO DE BOGOTÁ.
dc.relationCamo Software SA. (2006). The Unscrambler Methods. 288.
dc.relationCardim, M., & Lima, F. (2019). Master ’ s Degree in Plant Health in Sustainable Cropping Systems Development of Multispectral Indices for Organic Fertilization Monitoring in Tomato Plants at Early Stages.
dc.relationCasierra-Posada, F., & Poveda, J. (2005). La toxicidad por exceso de Mn y Zn disminuye la producción de materia seca, los pigmentos foliares y la calidad del fruto en fresa ( Fragaria sp . cv . Camarosa ). Agronomía Colombiana. https://www.redalyc.org/pdf/1803/180316955013.pdf
dc.relationCurran, P. J., Dungan, J. L., Macler, B. A., & Plummer, S. E. (1991). The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration. Remote Sensing of Environment, 35(1), 69–76. https://doi.org/10.1016/0034-4257(91)90066-F
dc.relationDe Jong, S. M., & Van der Meer, F. D. (Eds.). (2007). Remote sensing image analysis: including the spatial domain (Vol. 5). Springer Science & Business Media.
dc.relationEsmeral Vargas, Y. R. (2011). Análisis De La Evapotranspiración Real En El Cultivo De Rosa. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 1–94.
dc.relationPlantas y flores. (2012). Esquema imagen de las partes de un rosal y de una rosa. http://flores-y-plantas-flowers-and-plants.blogspot.com/2012/11/esquema-imagen-de-las-partes-de-un.html
dc.relationFageria, V. D. (2001). Nutrient interactions in crop plants. Journal of plant nutrition, 24(8), 1269-1290.
dc.relationFainstein, R. Manual para el cultivo de rosas en Latinoamérica. Editorial Ecuaoffset, Quito. 1997. 247 p.
dc.relationFern, C. I., Leblon, B., Wang, J., Haddadi, A., & Wang, K. (2021). Detecting Infected Cucumber Plants with Close-Range Multispectral Imagery. Remote Sensing.
dc.relationFernández, C. I., Haddadi, A., Leblon, B., Wang, J., & Wang, K. (2021). Comparison between three registration methods in the case of non-georeferenced close range of multispectral images. Remote Sensing, 13(3). https://doi.org/10.3390/rs13030396
dc.relationFernández, C. I., Leblon, B., Wang, J., Haddadi, A., & Wang, K. (2021). Detecting infected cucumber plants with close-range multispectral imagery. Remote Sensing, 13(15). https://doi.org/10.3390/rs13152948
dc.relationGalvez-Sola, L., García-Sánchez, F., Pérez-Pérez, J. G., Gimeno, V., Navarro, J. M., Moral, R., Martínez-Nicolás, J. J., & Nieves, M. (2015). Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy. Frontiers in Plant Science, 6(JULY). https://doi.org/10.3389/fpls.2015.00571
dc.relationGates, D. M., Keegan, H. J., Schleter, J. C., & Weidner, V. R. (1965). Spectral Properties of Plants. Applied Optics, 4(1), 11. https://doi.org/10.1364/AO.4.000011
dc.relationGitelson, A. A., Zur, Y., Chivkunova, O. B., & Merzlyak, M. N. (2002). Assessing Carotenoid Content in Plant Leaves with Reflectance. 75(3), 272–281.
dc.relationGururani, M. A., Upadhyaya, C. P., Strasser, R. J., Woong, Y. J., & Park, S. W. (2012). Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiology and Biochemistry, 58(July), 182–194. https://doi.org/10.1016/j.plaphy.2012.07.003
dc.relationHu, J., He, D., & Yang, P. (2010). Study on Plant Nutrition Indicator Using Leaf Spectral Transmittance for Nitrogen Detection Study on Plant Nutrition Indicator Using Leaf Spectral Trans-mittance for Nitrogen Detection. 10. https://doi.org/10.1007/978-3-642-18369-0_60ï
dc.relationHuber, S., Kneubühler, M., Psomas, A., Itten, K., & Zimmermann, N. E. (2008). Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management, 256(3), 491–501. https://doi.org/10.1016/j.foreco.2008.05.011
dc.relationHumphries, J. M., Stangoulis, J. C. R., & Graham, R. D. (2006). 12 Manganese. Animals, 351–374.
dc.relationHurtado, M., Hernandez, M., Dupeyron, D., Rieumont, J., Rodriguez, C., Cuesta, E., & Sardiña, C. (2007). Síntesis y comportamiento de un material polimérico aplicado como recubrimiento en un fertilizante de liberación controlada. Revista Iberoamericana de Polímeros, 8(4), 275–286.
dc.relationJamaica-Tenjo, D. A., Puerto-lara, A. E., Guerrero-aldana, J. J., & García-navarrete, O. L. (2020). Use of multispectral images to evaluate the efficacy of pre-emergent herbicides in peas under greenhouse conditions Uso de imágenes multiespectrales para la evaluación de la eficacia de herbicidas pre-emergentes en arveja , en condiciones de invernadero. REVISTA COLOMBIANA DE CIENCIAS HORTÍCOLAS, 15(2), 0–1.
dc.relationJhanji, S., Sadana, U., & Shukla, A. K. (2015). Manganese efficiency in relation to differential production and allocation of carbohydrates between source and sink organs of diverse wheat genotypes Manganese efficiency in relation to differential production and allocation of carbohydrates between source and sink organs of diverse wheat genotypes. June 2016. https://doi.org/10.1007/s11738-014-1759-6.
dc.relationJhanji, S., Sekhon, N. K., Sadana, U. S., & Gill, T. P. S. (2011). CHARACTERIZATION OF MORPHOPHYSIOLOGICAL TRAITS OF RICE GENOTYPES WITH DIVERSE MANGANESE EFFICIENCY. 16(3), 245–257.
dc.relationLee, W. S., & Searcy, S. W. (2000). Assessing Nitrogen Stress In Corn Varieties Of Varying Color Citrus HLB Detection by Polarized Imaging View project Triticale seed properties View project. https://www.researchgate.net/publication/2455515
dc.relationLiang, S. (2004). Quantitative remote sensing for land surface characterization.
dc.relationLiaghat, S., & Balasundram, S. K. (2014). A Review : The Role of Remote Sensing in Precision Agriculture A Review : The Role of Remote Sensing in Precision Agriculture. February. https://doi.org/10.3844/ajabssp.2010.50.55
dc.relationMahajan, G. R., Das, B., Murgaokar, D., Herrmann, I., Berger, K., Sahoo, R. N., Patel, K., Desai, A., Morajkar, S., & Kulkarni, R. M. (2021). Monitoring the foliar nutrients status of mango using spectroscopy‐based spectral indices and plsr‐combined machine learning models. Remote Sensing, 13(4), 1–24. https://doi.org/10.3390/rs13040641
dc.relationMicrofertiza. (2016) Manual técnico de fertilización de cultivos.
dc.relationMeyer, H., & Lehnert, L. W. (2020). Introduction to “ hsdar “. 1–52. MicaSense Multispectral Sensors. (n.d.). Retrieved February 8, 2021, from https://micasense.com/
dc.relationMirik, M., Michels, G. J., Kassymzhanova-mirik, S., Elliott, N. C., & Bowling, R. (2006). Hyperspectral Spectrometry as a Means to Differentiate Uninfested and Infested Winter Wheat by Greenbug ( Hemiptera : Aphididae ). J. Econ. Entomol., 1682–1690.
dc.relationMulyadi, T., Hariyandi, Sudradjat, & Kustiyo. (2017). Nitrogen Content and Carbon Stock Prediction in Oil Palm using Satellite Image Analysis. 05(04), 677–683.
dc.relationPadilla, F. M., Peña-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2015). Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Annals of Applied Biology, 166(2), 271–285. https://doi.org/10.1111/aab.12181
dc.relationPeng, Y., Nguy-Robertson, A., Arkebauer, T., & Gitelson, A. A. (2017). Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030226
dc.relationRashed, M. H., Hoque, T. S., Jahangir, M. M. R., & Hashem, M. A. (2019). Manganese as a Micronutrient in Agriculture: Crop Requirement and Management. J. Environ. Sci. & Natural Resources, 12(2), 225–242.
dc.relationRuppenthal, V., & Conte e Castro, A. M. (2005). Nutrição E Produção De Gladíolo ( 1 ). 1, 145–150.
dc.relationSánchez, I., Loreto, G., Padilla, J., & García, P. (2017). Caracterización Nutricional de un Cultivo Controlado de Jitomate Silvestre Mediante Imágenes Multiespectrales Revista de Investigación y Desarrollo interaccionar con un elemento físico de la escena llamado Campo Insta. Revista de Investigación y Desarrollo, 3(10), 31–38
dc.relationSantos, E. F., Kondo Santini, J. M., Paixão, A. P., Júnior, E. F., Lavres, J., Campos, M., & Reis, A. R. dos. (2017). Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiology and Biochemistry, 113, 6–19. https://doi.org/10.1016/j.plaphy.2017.01.022
dc.relationSchepers, J. S., Blackmer, T. M., Wilhelm, W., Resende, M., Schepers’, J. S., Blackmer’, T. M., Wilhelm~, W. W., & Resende~, M. (1990). Transmittance and Reflectance Measurements of Corn Leaves Transmittance and Reflectance Measurements of Corn Leaves from Plants with Different Nitrogen and Water Supply from Plants with Different Nitrogen and Water Supply Transmittance and Reflectance Measurements of Corn Leaves from Plants with Different Nitrogen and Water Supply. In J, Plant Phyriol (Vol. 148). https://digitalcommons.unl.edu/usdaarsfacpub/99
dc.relationSchmidt, S. B., Jensen, P. E., & Husted, S. (2016). Manganese Deficiency in Plants: The Impact on Photosystem II. In Trends in Plant Science (Vol. 21, Issue 7, pp. 622–632). Elsevier Ltd. https://doi.org/10.1016/j.tplants.2016.03.001
dc.relationSchmidt, S. B., & Pedas, P. (2013). Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. January 2014. https://doi.org/10.1007/s11104-013-1702-4
dc.relationShapiro, A. S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality ( Complete Samples ) Published by : Biometrika Trust Stable URL : http://www.jstor.org/stable/2333709. Biometrika, 52(3/4), 591–611.
dc.relationSomers, I. I., & Shive, J. W. (1942). THE IRON-MANGANESE RELATION IN PLANT METABOLISM’ (WITH SIX FIGURES).
dc.relationSummy, K. R. (2008). Using Color Infrared Imagery to Detect Sooty Mold and Fungal Pathogens of Glasshouse-propagated Plants. HortScience, 43(5), 1485–1491.
dc.relationUllah, A., & Environ, P. W. (2016). Manganese nutrition improves the productivity and grain biofortification of fine grain aromatic rice in conventi ... Related papers. https://doi.org/10.1007/s10333-016-0573-8
dc.relationWasonga, D. O., Yaw, A., Kleemola, J., Alakukku, L., & Mäkelä, P. S. A. (2021). Red-green-blue and multispectral imaging as potential tools for estimating growth and nutritional performance of cassava under deficit irrigation and potassium fertigation. Remote Sensing, 13(4), 1–20. https://doi.org/10.3390/rs13040598
dc.relationWilliams, P. C., & Sobering, D. C. (1996). How do we do it: a brief summary of the methods we use in developing near infrared calibrations. Near infrared spectroscopy: The future waves, 185-188.
dc.relationYong, A. (2004). EL CULTIVO DEL ROSAL Y SU PROPAGACIÓN. Cultivos Tropicales, 25(2), 53–67. http://www.redalyc.org/articulo.oa?id=193217832008
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de las respuestas espectrales como base para la estimación del estado nutricional de manganeso en plantas cultivadas de rosa sp. var. Freedom
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución