dc.contributor | Orozco Díaz, Jose Gilberto | |
dc.contributor | Ram (Red Para El Uso Adecuado de Medicamentos) | |
dc.creator | Bocanegra Perilla, Luis Alejandro | |
dc.date.accessioned | 2023-08-08T13:23:50Z | |
dc.date.accessioned | 2023-08-25T13:26:58Z | |
dc.date.available | 2023-08-08T13:23:50Z | |
dc.date.available | 2023-08-25T13:26:58Z | |
dc.date.created | 2023-08-08T13:23:50Z | |
dc.date.issued | 2023-08-05 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84469 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8426971 | |
dc.description.abstract | Introducción: La investigación de nuevas indicaciones para medicamentos biológicos en oncología ha sido fundamental para mejorar el abordaje en el tratamiento del cáncer. Sin embargo, han surgido inquietudes relacionadas con la evidencia clínica soporte de dichas indicaciones. Objetivo: El interés de esta investigación consistió en evaluar la calidad metodológica de los ensayos clínicos soporte de nuevas indicaciones otorgadas a medicamentos biológicos previamente aprobados por la FDA (Efficacy Supplements) durante los años 2016-2018. Metodología: Se realizó un estudio observacional retrospectivo de corte transversal seleccionando el conjunto de nuevas aprobaciones de la FDA a productos biológicos (BLA Efficacy Supplements), correspondientes a nuevas indicaciones en oncología para los años 2016 a 2018. Se describieron las características de los ensayos clínicos soporte de aprobación de dichas indicaciones, se evaluó el riesgo de sesgo con la ayuda de la herramienta RoB2 revisada por Cochrane y se determinó la magnitud del beneficio clínico con la aplicación de la Escala de Magnitud de Beneficio Clínico versión 1.1 desarrollada por la ESMO. Resultados: Se identificaron un total de 37 aprobaciones asociadas a agentes inmunoterapéuticos, empleados en su mayoría en combinación con otros tratamientos. Los ensayos clínicos se caracterizaron por presentar algunos reparos en su calidad metodológica, con la ausencia de aleatorización (43.2%), cegamiento (86.5%) y grupo control (43.2%) en un amplio porcentaje de ensayos, lo que llevo a considerar al 59.5% de los ensayos clínicos soporte de aprobación con un alto riesgo de sesgo. El beneficio clínico sustancial se determinó solo en el 16.2% de las indicaciones aprobadas. Conclusión: El conjunto de ensayos clínicos analizados en esta investigación se compuso de una gran proporción de ensayos con alto riesgo de sesgo y un reducido tamaño del beneficio clínico. Se concluye a su vez que el sistema de investigación y aprobación de medicamentos oncológicos debe ser cuidadosamente examinado ya que la evidencia clínica parece limitada en calidad metodológica y magnitud del beneficio clínico modesta. (Texto tomado de la fuente) | |
dc.description.abstract | Background: The research of new indications for biological drugs in oncology has been essential to improve the approach in the treatment of cancer. However, concerns have been raised regarding the clinical evidence supporting these indications. Objective: The purpose of this research consisted in evaluating the methodological quality of clinical trials supporting new indications granted to biological drugs previously approved by the FDA (Efficacy Supplements) during the years 2016-2018. Methodology: A retrospective cross-sectional observational study was carried out selecting the set of new FDA approvals for biological products (BLA Efficacy Supplements), corresponding to new indications in oncology for the period 2016 to 2018. The characteristics of the clinical trials supporting the approval of these indications, the risk of bias was assessed with the help of the RoB2 tool reviewed by Cochrane and the magnitude of the clinical benefit was determined with the application of the Magnitude of Clinical Benefit Scale version 1.1 developed by ESMO. Results: A total of 37 approvals associated with immunotherapeutic agents were identified, mostly used in combination with other treatments. The clinical trials were characterized by presenting some objections in their methodological quality, with the absence of randomization (43.2%), blinding (86.5%) and control group (43.2%) in a large percentage of trials, which led to considering 59.5 % of approval support clinical trials with a high risk of bias. Substantial clinical benefit was determined in only 16.2% of the approved indications. Conclusion: The set of clinical trials analyzed in this investigation consisted of a large proportion of trials with a high risk of bias and a small size of clinical benefit. On the other hand, it is concluded that the system for research and approval of oncological drugs must be carefully examined since the clinical evidence seems limited in methodological quality and magnitude of modest clinical benefit. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Farmacología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | 1. Jiang DM, Chan KKW, Jang RW, Booth C, Liu G, Amir E, et al. Anticancer drugs approved by the Food and Drug Administration for gastrointestinal malignancies: Clinical benefit and price considerations. Cancer Med. 2019;8(4):1584-1593. doi:10.1002/cam4.2058 | |
dc.relation | 2. Pease AM, Krumholz HM, Downing NS, Aminawung JA, Shah ND, Ross JS. Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: Systematic review. BMJ (Online). 2017;357. doi:10.1136/bmj.j1680 | |
dc.relation | 3. Naci H, Smalley KR, Kesselheim AS. Characteristics of preapproval and postapproval studies for drugs granted accelerated approval by the US Food and Drug Administration. JAMA - Journal of the American Medical Association. 2017;318(7):626-636. doi:10.1001/jama.2017.9415 | |
dc.relation | 4. Sahragardjoonegani B, Beall RF, Kesselheim AS, Hollis A. Repurposing existing drugs for new uses: a cohort study of the frequency of FDA-granted new indication exclusivities since 1997. J Pharm Policy Pract. 2021;14(1). doi:10.1186/s40545-020-00282-8 | |
dc.relation | 5. Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.02965 | |
dc.relation | 6. Cancer. World Health Organization. https://www.who.int/es/news-room/fact-sheets/detail/cancer. Accessed May 3, 2022. | |
dc.relation | 7. Russo A, Peeters M, Incorvaia L, Rolfo C. Practical Medical Oncology Textbook. Springer, 2021: Section I-II | |
dc.relation | 8. DeVita V, Lawrence T, Rosenberg S. DeVita, Hellman, and Rosenberg’s cancer. 11th ed. Wolters Kluwer, 2019: Part I-II | |
dc.relation | 9. ¿Qué es el cáncer y cómo se desarrolla? SEOM: Sociedad Española de Oncología Médica. https://seom.org/informacion-sobre-el-cancer/que-es-el-cancer-y-como-se-desarrolla?start=2. Published February 4, 2020. Accessed May 9, 2022. | |
dc.relation | 10. ¿Qué es el cáncer? Instituto Nacional del Cáncer. https://www.cancer.gov/espanol/cancer/naturaleza/que-es. Accessed May 9, 2022. | |
dc.relation | 11. Hudgins PA, Beitler JJ. Introduction to the Imaging and Staging of Cancer. Neuroimaging Clin N Am. 2013;23(1):1-7. doi:10.1016/j.nic.2012.08.003 | |
dc.relation | 12. Telloni SM. Tumor staging and grading: A primer. In: Methods in Molecular Biology. Vol 1606. Humana Press Inc.; 2017:1-17. doi:10.1007/978-1-4939-6990-6_1 | |
dc.relation | 13. Hillmann P, Schmitz D, Mestan J, D’Alonzo S, Fabbro D. Cancer Biology and the Principles of Targeted Cancer Drug Discovery. In: Comprehensive Medicinal Chemistry III. Vol 5-8. Elsevier Inc.; 2017:1-38. doi:10.1016/B978-0-12-409547-2.12390-X | |
dc.relation | 14. Hulvat MC. Cancer Incidence and Trends. Surgical Clinics of North America. Published online 2020. doi:10.1016/j.suc.2020.01.002 | |
dc.relation | 15. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/CAAC.21660 | |
dc.relation | 16. Yıldırım-Kahrıman S. NON-INTRINSIC CANCER RISK FACTORS. Exp Oncol. 2021;43(4):290-297. doi:10.32471/EXP-ONCOLOGY.2312-8852.VOL-43-NO-4.16804 | |
dc.relation | 17. Piña-Sánchez P, Chávez-González A, Ruiz-Tachiquín M, et al. Cancer Biology, Epidemiology, and Treatment in the 21st Century: Current Status and Future Challenges From a Biomedical Perspective. Cancer Control. 2021;28:1-21. doi:10.1177/10732748211038735 | |
dc.relation | 18. Jaffray DA, Gospodarowicz MK. Radiation Therapy for Cancer. Taehan Uihak Hyophoe Chi. 2015;6:142-146. doi:10.1596/978-1-4648-0349-9_CH14 | |
dc.relation | 19. Nakamura H, Maeda H. Cancer Chemotherapy. Fundamentals of Pharmaceutical Nanoscience. Published online March 3, 2022:401-427. doi:10.1007/978-1-4614-9164-4_15 | |
dc.relation | 20. Chu E, DeVita Jr. VT. Physicians’ Cancer Chemotherapy Drug Manual 2021. 21st ed. Jones & Bartlett Learning, 2020; 2021: Chapter 1 | |
dc.relation | 21. Definición de terapia neoadyuvante - Diccionario de cáncer del NCI . Instituto Nacional del Cáncer. https://www.cancer.gov/espanol/publicaciones/diccionarios/diccionario-cancer/def/terapia-neoadyuvante. Accessed August 6, 2022. | |
dc.relation | 22. Elder Michael Dixon James P Blackmur Jacqueline Laurie KJ. Endocrine Therapy for Cancer. | |
dc.relation | 23. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current Challenges in Cancer Treatment. Clin Ther. 2016;38(7):1551-1566. doi:10.1016/j.clinthera.2016.03.026 | |
dc.relation | 24. Xia AL, Xu Y, Lu XJ. Cancer immunotherapy: Challenges and clinical applications. J Med Genet. 2019;56(1):1-3. doi:10.1136/jmedgenet-2018-105852 | |
dc.relation | 25. Bateman AC. Molecules in cancer immunotherapy: Benefits and side effects. J Clin Pathol. 2019;72(1):20-24. doi:10.1136/jclinpath-2018-205370 | |
dc.relation | 26. Liu J, Pandya P, Afshar S. Therapeutic advances in oncology. Int J Mol Sci. 2021;22(4):1-41. doi:10.3390/ijms22042008 | |
dc.relation | 27. Rothenberg ML, Mccarthy J, Holmes P. Price, Cost, and Value of Cancer Medicines A Pharmaceutical Industry Perspective.; 2020. www.journalppo.com | |
dc.relation | 28. How FDA Approves Drugs and Regulates Their Safety and Effectiveness. Published online 2018. https://crsreports.congress.gov. Accessed January 22, 2023 | |
dc.relation | 29. Investigational New Drug (IND) Application. Food and Drug Administration. https://www.fda.gov/drugs/typesapplications/investigational-new-drug-ind-application. Accessed September 3, 2022 | |
dc.relation | 30. New Drug Application (NDA). Food and Drug Administration. https://www.fda.gov/drugs/typesapplications/new-drug-application-nda. Accessed September 2, 2022 | |
dc.relation | 31. Abbreviated New Drug Application (ANDA). Food and Drug Administration. https://www.fda.gov/drugs/types-applications/abbreviated-new-drug-application-anda. Accessed September 2, 2022 | |
dc.relation | 32. Biologics License Applications (BLA) Process (CBER). Food and Drug Administration. https://www.fda.gov/vaccines-blood-biologics/development-approval-process-cber/biologics-license-applications-bla-process-cber. Accessed September 2, 2022 | |
dc.relation | 33. Fda, Cber. SOPP 8401.2: Administrative Processing of BLA and NDA Supplements.; 2021. Food and Drug Administration. https://www.fda.gov/media/108895/download. Accessed September 2, 2022 | |
dc.relation | 34. Accelerated Approval. Food and Drug Administration. https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/accelerated-approval. Accessed September 2, 2022 | |
dc.relation | 35. Darrow JJ, Avorn J, Kesselheim AS. FDA Approval and Regulation of Pharmaceuticals, 1983-2018. JAMA - Journal of the American Medical Association. 2020;323(2):164-176. doi:10.1001/jama.2019.20288 | |
dc.relation | 36. Fast track. U.S. Food and Drug Administration. https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/fast-track. Accessed January 28, 2023. | |
dc.relation | 37. Priority review. U.S. Food and Drug Administration. https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/priority-review. Accessed January 28, 2023. | |
dc.relation | 38. Breakthrough therapy. U.S. Food and Drug Administration. https://www.fda.gov/patients/fast-track-breakthrough-therapy-accelerated-approval-priority-review/breakthrough-therapy. Accessed January 28, 2023. | |
dc.relation | 39. Lichtenberg FR. How cost-effective are new cancer drugs in the U.S.? Expert Rev Pharmacoecon Outcomes Res. 2020;20(1):39-55. doi:10.1080/14737167.2020.1709965 | |
dc.relation | 40. Lentz R, Benson AB, Kircher S. Financial toxicity in cancer care: Prevalence, causes, consequences, and reduction strategies. J Surg Oncol. 2019;120(1):85-92. doi:10.1002/jso.25374 | |
dc.relation | 41. Howard DH, Chernew ME, Abdelgawad T, Smith GL, Sollano J, Grabowski DC. New anticancer drugs associated with large increases in costs and life expectancy. Health Aff. 2016;35(9):1581-1587. doi:10.1377/hlthaff.2016.0286 | |
dc.relation | 42. Downing NS, Aminawung JA, Shah ND, Krumholz HM, Ross JS. Clinical trial evidence supporting FDA approval of novel therapeutic agents, 2005-2012. JAMA - Journal of the American Medical Association. 2014;311(4):368-377. doi:10.1001/jama.2013.282034 | |
dc.relation | 43. Gyawali B, Hey SP, Kesselheim AS. Assessment of the Clinical Benefit of Cancer Drugs Receiving Accelerated Approval. JAMA Intern Med. 2019;179(7):906-913. doi:10.1001/jamainternmed.2019.0462 | |
dc.relation | 44. Gyawali B, Rome BN, Kesselheim AS. Regulatory and clinical consequences of negative confirmatory trials of accelerated approval cancer drugs: retrospective obser-vational study. BMJ. 2021;374:1959. doi:10.1136/bmj.n1959 | |
dc.relation | 45. Sachs RE, Ginsburg PB, Goldman DP. Encouraging new uses for old drugs. JAMA - Journal of the American Medical Association. 2017;318(24):2421-2422. doi:10.1001/jama.2017.17535 | |
dc.relation | 46. DiMasi JA. Innovating by developing new uses of already-approved drugs: Trends in the marketing approval of supplemental indications. Clin Ther. 2013;35(6):808-818. doi:10.1016/j.clinthera.2013.04.004 | |
dc.relation | 47. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022. Available from www.training.cochrane.org/handbook. | |
dc.relation | 48. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898. | |
dc.relation | 49. RoB 2: A revised Cochrane risk-of-bias tool for randomized trials. Cochrane Bias. https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-toolrandomized-trials. Accessed September 23, 2022 | |
dc.relation | 50. About the ESMO-MCBS. Accessed September 23, 2022. https://www.esmo.org/guidelines/esmo-mcbs/about-the-esmo-mcbs | |
dc.relation | 51. ESMO Magnitude of Clinical Benefit Scale | Evaluation Forms. Accessed September 23, 2022. https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-evaluation-forms | |
dc.relation | 52. Kiesewetter B, Cherny NI, Boissel N, et al. EHA evaluation of the ESMO-Magnitude of Clinical Benefit Scale version 1.1 (ESMO-MCBS v1.1) for haematological malignancies. ESMO Open. 2020;5(1). doi:10.1136/ESMOOPEN-2019-000611 | |
dc.relation | 53. Pardo, C. Estadística descriptiva multivariada. Bogotá, Colombia: Universidad Nacional de Colombia; 2020. https://doi.org/10.36385/fcbog-5-0 | |
dc.relation | 54. Faraway, J. J. Linear Models with R. 2nd ed. CRC Press; 2014 | |
dc.relation | 55. Gudicha, D.W., Schmittmann, V.D. & Vermunt, J.K. Statistical power of likelihood ratio and Wald tests in latent class models with covariates. Behav Res 49, 1824–1837 (2017). https://doi.org/10.3758/s13428-016-0825-y | |
dc.relation | 56. Bozdogan, H. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika 52, 345–370 (1987). https://doi.org/10.1007/BF02294361 | |
dc.relation | 57. van Oers MHJ, Kuliczkowski K, Smolej L, Petrini M, Offner F, Grosicki S, et al. Ofatumumab maintenance versus observation in relapsed chronic lymphocytic leukaemia (PROLONG): An open-label, multicentre, randomised phase 3 study. Lancet Oncol. 2015;16(13):1370-1379. doi:10.1016/S1470-2045(15)00143-6 | |
dc.relation | 58. Sehn LH, Chua N, Mayer J, Dueck G, Trněný M, Bouabdallah K, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(8):1081-1093. doi:10.1016/S1470-2045(16)30097-3 | |
dc.relation | 59. Younes A, Santoro A, Shipp M, Zinzani PL, Timmerman JM, Ansell S, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283-1294. doi:10.1016/S1470-2045(16)30167-X | |
dc.relation | 60. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. New England Journal of Medicine. 2015;372(4):311-319. doi:10.1056/nejmoa1411087 | |
dc.relation | 61. Larkins E, Blumenthal GM, Yuan W, He K, Sridhara R, Subramaniam S, et al. FDA Approval Summary: Pembrolizumab for the Treatment of Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma with Disease Progression on or After Platinum-Containing Chemotherapy. Oncologist. 2017;22(7):873-878. doi:10.1634/theoncologist.2016-0496 | |
dc.relation | 62. Robak T, Warzocha K, Govind Babu K, Kulyaba Y, Kuliczkowski K, Abdulkadyrov K, et al. Ofatumumab plus fludarabine and cyclophosphamide in relapsed chronic lymphocytic leukemia: results from the COMPLEMENT 2 trial. Leuk Lymphoma. 2017;58(5):1084-1093. doi:10.1080/10428194.2016.1233536 | |
dc.relation | 63. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2016;375(19):1823-1833. doi:10.1056/nejmoa1606774 | |
dc.relation | 64. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. New England Journal of Medicine. 2016;375(19):1856-1867. doi:10.1056/nejmoa1602252 | |
dc.relation | 65. Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. New England Journal of Medicine. 2016;375(14):1319-1331. doi:10.1056/nejmoa1607751 | |
dc.relation | 66. Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. New England Journal of Medicine. 2016;375(8):754-766. doi:10.1056/nejmoa1606038 | |
dc.relation | 67. Aghajanian C, Blank S v., Goff BA, Judson PL, Teneriello MG, Husain A, et al. OCEANS: A randomized, double-blind, placebo-controlled phase III trial of chemotherapy with or without bevacizumab in patients with platinum-sensitive recurrent epithelial ovarian, primary peritoneal, or fallopian tube cancer. Journal of Clinical Oncology. 2012;30(17):2039-2045. doi:10.1200/JCO.2012.42.0505 | |
dc.relation | 68. Coleman RL, Brady MF, Herzog TJ, Sabbatini P, Armstrong DK, Walker JL, et al. Bevacizumab and paclitaxel–carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2017;18(6):779-791. doi:10.1016/S1470-2045(17)30279-6 | |
dc.relation | 69. von Minckwitz G, Procter M, de Azambuja E, Zardavas D, Benyunes M, Viale G, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. New England Journal of Medicine. 2017;377(2):122-131. doi:10.1056/nejmoa1703643 | |
dc.relation | 70. Weber J, Mandala M, del Vecchio M, Gogas HJ, Arance AM, Cowey CL, et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. New England Journal of Medicine. 2017;377(19):1824-1835. doi:10.1056/nejmoa1709030 | |
dc.relation | 71. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017;18(3):312-322. doi:10.1016/S1470-2045(17)30065-7 | |
dc.relation | 72. Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. JOURNAL OF CLINICAL ONCOLOGY Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35:2125-2132. doi:10.1200/JCO | |
dc.relation | 73. Langer CJ, Gadgeel SM, Borghaei H, Papadimitrakopoulou VA, Patnaik A, Powell SF, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol. 2016;17(11):1497-1508. doi:10.1016/S1470-2045(16)30498-3 | |
dc.relation | 74. Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974-981. doi:10.1182/blood-2017-05-785246 | |
dc.relation | 75. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182-1191. doi:10.1016/S1470-2045(17)30422-9 | |
dc.relation | 76. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 2018;4(5). doi:10.1001/jamaoncol.2018.0013 | |
dc.relation | 77. Prince HM, Kim YH, Horwitz S, Dummer R, Scarisbrick J, Quaglino P, et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label, randomised, phase 3, multicentre trial. The Lancet. 2017;390(10094):555-566. doi:10.1016/S0140-6736(17)31266-7 | |
dc.relation | 78. Balar A v., Castellano D, O’Donnell PH, Grivas P, Vuky J, Powles T, et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(11):1483-1492. doi:10.1016/S1470-2045(17)30616-2 | |
dc.relation | 79. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L, et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. New England Journal of Medicine. 2017;376(11):1015-1026. doi:10.1056/nejmoa1613683 | |
dc.relation | 80. HIGHLIGHTS OF PRESCRIBING INFORMATION - Information for KEYTRUDA. Food and Drug Administration. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf. Accessed October 1, 2022. | |
dc.relation | 81. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. The Lancet. 2017;389(10088):2492-2502. doi:10.1016/S0140-6736(17)31046-2 | |
dc.relation | 82. Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. New England Journal of Medicine. 2017;377(14):1331-1344. doi:10.1056/nejmoa1614598 | |
dc.relation | 83. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after Chemoradiotherapy in Stage III Non–Small-Cell Lung Cancer. New England Journal of Medicine. 2017;377(20):1919-1929. doi:10.1056/nejmoa1709937 | |
dc.relation | 84. Connors JM, Jurczak W, Straus DJ, Ansell SM, Kim WS, Gallamini A, et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. New England Journal of Medicine. 2018;378(4):331-344. doi:10.1056/nejmoa1708984 | |
dc.relation | 85. Jen EY, Xu Q, Schetter A, Przepiorka D, Shen YL, Roscoe D, et al. FDA approval: Blinatumomab for Patients with B-cell Precursor Acute Lymphoblastic Leukemia in Morphologic Remission with Minimal Residual Disease. Clinical Cancer Research. 2019;25(2):473-477. doi:10.1158/1078-0432.CCR-18-2337 | |
dc.relation | 86. Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. New England Journal of Medicine. 2018;378(14):1277-1290. doi:10.1056/nejmoa1712126 | |
dc.relation | 87. Mateos MV, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. New England Journal of Medicine. 2018;378(6):518-528. doi:10.1056/nejmoa1714678 | |
dc.relation | 88. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: Results from the phase II KEYNOTE-158 study. Journal of Clinical Oncology. 2019;37(17):1470-1478. | |
dc.relation | 89. Tewari KS, Burger RA, Enserro D, Norquist BM, Swisher EM, Brady MF, et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer. J Clin Oncol. 2019;37:2317-2328. doi:10.1200/JCO.19 | |
dc.relation | 90. Armand P, Rodig S, Melnichenko V, Thieblemont C, Bouabdallah K, Tumyan G, et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J Clin Oncol. 2019;37:3291-3299. doi:10.1200/JCO | |
dc.relation | 91. Overman MJ, Lonardi S, Yeung K, Wong M, Lenz HJ, Gelsomino F, et al. JOURNAL OF CLINICAL ONCOLOGY Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol. 2018;36:773-779. doi:10.1200/JCO | |
dc.relation | 92. Ready N, Farago AF, de Braud F, Atmaca A, Hellmann MD, Schneider JG, et al. Third-Line Nivolumab Monotherapy in Recurrent SCLC: CheckMate 032. Journal of Thoracic Oncology. 2019;14(2):237-244. doi:10.1016/j.jtho.2018.10.003 | |
dc.relation | 93. Lexchin J. Quality of evidence considered by Health Canada in granting full market authorisation to new drugs with a conditional approval: A retrospective cohort study. BMJ Open. 2018;8(4). doi:10.1136/bmjopen-2017-020377 | |
dc.relation | 94. Puthumana J, Wallach JD, Ross JS. Clinical Trial Evidence Supporting FDA Approval of Drugs Granted Breakthrough Therapy Designation. JAMA. 2018;320(3):301-303. doi:10.1001/jama.2018.7619 | |
dc.relation | 95. Cherny NI. An appraisal of FDA approvals for adult solid tumours in 2017–2021: has the eagle landed? Nat Rev Clin Oncol. 2022;19(7):486-492. doi:10.1038/s41571-022-00636-y | |
dc.relation | 96. Marandino L, la Salvia A, Sonetto C, de Luca E, Pignataro D, Zichi C, et al. Deficiencies in health-related quality-of-life assessment and reporting: A systematic review of oncology randomized phase III trials published between 2012 and 2016. Annals of Oncology. 2018;29(12):2288-2295. doi:10.1093/annonc/mdy449 | |
dc.relation | 97. Carlisle BG, Doussau A, Kimmelman J. Benefit, burden, and impact for a cohort of post-approval cancer combination trials. Clinical Trials. 2020;17(1):18-29. doi:10.1177/1740774519873883 | |
dc.relation | 98. The Great Irony of Modern Oncology: Immunotherapy's Imprecision – Medscape. Accessed Jan 22, 2023. https://www.medscape.com/viewarticle/979707?src=WNL_infocu1_221119_MSCPEDIT&uac=288454AJ&impID=4887214&faf=1#vp_2 | |
dc.relation | 99. Kim MS, Prasad V. Pembrolizumab for all. J Cancer Res Clin Oncol. Published online 2022. doi:10.1007/s00432-022-04412-4 | |
dc.relation | 100. Trapani D, Tay-Teo K, Tesch ME, Roitberg F, Sengar M, Altuna SC, et al. Implications of Oncology Trial Design and Uncertainties in Efficacy-Safety Data on Health Technology Assessments. Current Oncology. 2022;29(8):5774-5791. doi:10.3390/curroncol29080455 | |
dc.relation | 101. Kemp R, Prasad V. Surrogate endpoints in oncology: When are they acceptable for regulatory and clinical decisions, and are they currently overused? BMC Med. 2017;15(1). doi:10.1186/s12916-017-0902-9 | |
dc.relation | 102. London AJ, Kimmelman J. Accelerated drug approval and health inequality. JAMA Intern Med. 2016;176(7):883-884. doi:10.1001/jamainternmed.2016.2534 | |
dc.relation | 103. Johnson JR, Ning YM, Farrell A, Justice R, Keegan P, Pazdur R. Accelerated approval of oncology products: The food and drug administration experience. J Natl Cancer Inst. 2011;103(8):636-644. doi:10.1093/jnci/djr062 | |
dc.relation | 104. WHO Publishes new guidance to promote Strong, Efficient and Sustainable Regulatory Systems. World Health Organization. https://www.who.int/news/item/29-04-2021-who-publishes-new-guidance-to-promote-strong-efficient-and-sustainable-regulatory-systems. Accessed Jan 23, 2023 | |
dc.relation | 105. ESMO. European society for medical oncology. Esmo.org. https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-for-solid-tumours/esmo-mcbs-scorecards/scorecard-26-1. Accessed Jul 4, 2023 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados al autor, 2023 | |
dc.title | Evaluación de la evidencia clínica de nuevas indicaciones en oncología otorgadas a medicamentos biológicos previamente registrados en la FDA (Efficacy Supplements): Análisis retrospectivo 2016-2018 | |
dc.type | Trabajo de grado - Maestría | |