dc.contributor | Román Campos, Francisco José | |
dc.contributor | EMC-UN | |
dc.contributor | Cristancho Caviativa, Jorge Alejandro [0000000207497078] | |
dc.contributor | Cristancho Caviativa, Jorge Alejandro [0001549136] | |
dc.contributor | Cristancho Caviativa, Jorge Alejandro [57188691777] | |
dc.creator | Cristancho Caviativa, Jorge Alejandro | |
dc.date.accessioned | 2023-08-08T14:48:39Z | |
dc.date.accessioned | 2023-08-25T13:07:30Z | |
dc.date.available | 2023-08-08T14:48:39Z | |
dc.date.available | 2023-08-25T13:07:30Z | |
dc.date.created | 2023-08-08T14:48:39Z | |
dc.date.issued | 2023-05-19 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84476 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8426937 | |
dc.description.abstract | Colombia has a very high lightning activity as shown in different published lightning maps.
Any activity that takes place outdoors in stormy weather, even more in places recognized
as having high lightning activity, at certain times and seasons, increases even more the
risk of suffering some type of injury for exposed people. Non-accessible places, such as
remote and backcountry locations, worsen this scenario. It is reported for the Colombian
National Army in fifteen-year averages, up to 48 soldiers per year victims of lightning
strikes. To reduce the lightning risk to health in vulnerable population that cannot avoid
their exposure, the most probable mechanisms of injury are analyzed considering some
scenarios with existing human models. As a portable shelter requires lightweight lightning
protection materials, some types of electroconductive fabrics against standard lightning
impulse currents were investigated in the laboratory. Some samples of conductive fabrics
were subject to several subsequent lightning-like currents and analyzed, revealing some
patterns changes on its surface. Despite the morphological changes, among the tested
fabrics, a ripstop conductive fabric showed great potential and proved capable of
withstanding several lightning impulse currents, suggesting its suitability for use in personal
mobile shelters. A model of a basic portable shelter is proposed and tested in the
laboratory. The results show that the basic shelter model can protect human beings against
the earth potential rise (EPR) minimizing the risk caused by a close lightning discharge.(Texto tomado de la fuente) | |
dc.description.abstract | Colombia tiene una actividad de rayos muy alta como se muestra en diferentes mapas de
rayos publicados. Cualquier actividad que se desarrolle a campo abierto durante una
tormenta, más aún en lugares reconocidos como de alta actividad de rayos, en
determinadas épocas y temporadas, aumenta aún más el riesgo de sufrir algún tipo de
lesión para las personas expuestas. Los lugares remotos y de difícil acceso alejados de
centros urbanos empeoran este escenario. Para el Ejército Nacional de Colombia se
reporta en un promedio de quince años, hasta 48 soldados por año víctimas del impacto
de rayos. Para reducir el riesgo del rayo a la salud en la población vulnerable que no puede
evitar su exposición, se analizan los mecanismos más probables de lesión considerando
algunos escenarios con modelos humanos existentes. Considerando que un refugio
portátil para la protección contra rayos requiere materiales livianos, se investigaron en el
laboratorio algunos tipos de tejidos electroconductores sometidos a corrientes impulsivas
tipo rayo con forma de onda estándar. Algunas muestras de tejidos conductores se
sometieron a varias corrientes de rayo subsecuentes y se analizaron, revelando algunos
cambios notorios en su superficie. A pesar de los cambios morfológicos, entre los tejidos
ensayados, un tejido conductor tipo rip-stop (anti-desgarro) mostró un gran potencial y
resistió varias corrientes de impulso de rayo, sugiriendo su uso en refugios móviles para
personas. Se propone un modelo de refugio portátil básico al cual se le realizan ensayos
de laboratorio. Los resultados muestran que el modelo de refugio básico propuesto podría
proteger a los seres humanos contra el aumento del potencial de tierra (EPR – earth
potential rise) minimizando el riesgo causado por una descarga de rayo cercana | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | R. I. Albrecht, S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian,
“Where Are the Lightning Hotspots on Earth?,” Bull. Am. Meteorol. Soc., vol. 97, no.
11, pp. 2051–2068, Feb. 2016, doi: 10.1175/BAMS-D-14-00193.1 | |
dc.relation | IEC 62858, Lightning density based on lightning location systems – General
principles, vol. IEC 62858:2090. 2019 | |
dc.relation | V. Cooray, Ed., The Lightning Flash, 2 edition. London: The Institution of
Engineering and Technology, 2014 | |
dc.relation | V. Cooray, An Introduction to Lightning. Dordrecht: Springer Netherlands, 2015.
Accessed: Sep. 08, 2016. [Online]. Available: http://link.springer.com/10.1007/978-
94-017-8938-7 | |
dc.relation | V. A. Rakov and M. A. Uman, Lightning: Physics and Effects. Cambridge University
Press, 2003 | |
dc.relation | V. Cooray, Lightning Protection. in IET Power and Energy Series, no. 58. London,
UK: The Institution of Engineering and Technology, 2010 | |
dc.relation | M. A. Uman, The Art and Science of Lightning Protection. 2008. doi:
10.1017/CBO9780511585890 | |
dc.relation | CIGRE WG C4.407, Lightning Parameters for Engineering Applications. 2013, p.
118 | |
dc.relation | K. Berger, R. B. Anderson, and H. Kröninger, “Parameters of Lightning Flashes,”
Electra, vol. 41, pp. 23–37, 1975 | |
dc.relation | DEHN + SÖHNE, “Lightning Protection Guide - 3rd updated Edition.” DEHN +
SÖHNE GmbH + Co.KG., 2014. Accessed: Apr. 13, 2016. [Online]. Available:
https://www.dehn-international.com/en/lightning-protection-guide | |
dc.relation | SAE ARP5412B, Aircraft Lightning Environment and Related Test Waveforms.
Accessed: Apr. 30, 2021. [Online]. Available:
https://www.sae.org/standards/content/arp5412b/ | |
dc.relation | NTC 4552, Proteccion Contra Descargas Electricas Atmosfericas (Rayos), vol. NTC
4552 (1-3). 2008 | |
dc.relation | H. E. Rojas, F. Santamaría, O. F. Escobar, and F. J. Román, “Lightning research in
Colombia: Lightning parameters, protection systems, risk assessment and warning
systems,” Ing. Desarro., vol. 35, no. 1, pp. 240–261, Jun. 2017, doi:
10.14482/inde.35.1.8951 | |
dc.relation | H. Torres, E. Perez, C. Younes, D. Aranguren, J. Montana, and J. Herrera,
“Contribution to Lightning Parameters Study Based on Some American Tropical
Regions Observations,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no.
8, pp. 4086–4093, Aug. 2015, doi: 10.1109/JSTARS.2015.2428217 | |
dc.relation | S. Visacro and M. Guimarães, “Recent lightning measurements and results at Morro
do Cachimbo Station,” presented at the 2014 ILDC/ILMC International Lightning
Detection Conference / International Lightning Meterology Conference, Tucson,
Arizona, 2014 | |
dc.relation | M. Gagné and D. Therriault, “Lightning strike protection of composites,” Prog.
Aerosp. Sci., vol. 64, pp. 1–16, Enero 2014, doi: 10.1016/j.paerosci.2013.07.002 | |
dc.relation | F. Heidler, Z. Flisowski, W. Zischank, Ch. Bouquegneau, and C. Mazzetti,
“Parameters of lightning current given in IEC 62305 - Background, experience and
outlook,” in 29th International Conference on Lightning Protection (ICLP), Uppsala,
Sweden, Jun. 2008 | |
dc.relation | A. Gomes, C. Gomes, M. Z. K. Ab Kadir, M. Izadi, and M. Rock, “Evaluation of
lightning protection systems proposed for small structures by electromagnetic
simulation,” 2016 33rd Int. Conf. Light. Prot. ICLP 2016, 2016, doi:
10.1109/ICLP.2016.7791440 | |
dc.relation | IEC 62305-1, Protection against lightning - Part 1: General principles, vol. IEC
62305-1:2010. 2010 | |
dc.relation | Y. Hirano, S. Katsumata, Y. Iwahori, and A. Todoroki, “Artificial lightning testing on
graphite/epoxy composite laminate,” Compos. Part Appl. Sci. Manuf., vol. 41, no. 10,
pp. 1461–1470, Oct. 2010, doi: 10.1016/j.compositesa.2010.06.008 | |
dc.relation | T. Ogasawara, Y. Hirano, and A. Yoshimura, “Coupled thermal–electrical analysis
for carbon fiber/epoxy composites exposed to simulated lightning current,” Compos.
Part Appl. Sci. Manuf., vol. 41, no. 8, pp. 973–981, Aug. 2010, doi:
10.1016/j.compositesa.2010.04.001 | |
dc.relation | W. G. Chace and H. K. Moore, Exploding Wires: Volume 2 Proceedings of the
Second Conference on the Exploding Wire Phenomenon, Held at Boston, November
13–15, 1961, under the Sponsorship of the Geophysics Research Directorate, Air
Force Cambridge Research Laboratories, Office of Aerospace Research, with the
Cooperation of the Lowell Technological Institute Research Foundation. Springer
US, 1962. doi: 10.1007/978-1-4684-7505-0 | |
dc.relation | C. J. Andrews, Lightning Injuries: Electrical, Medical, and Legal Aspects. CRC
Press, 2018 | |
dc.relation | IEC 62305-2, Protection against lightning - Part 2: Risk managment, vol. IEC 62305-
2:2010. 2010, p. 171 | |
dc.relation | J. A. Cristancho C., J. E. Rodriguez M., C. A. Rivera G., F. Román, L. K. Herrera,
and J. J. Pantoja, “Conductive Fabric Potential Rise due to Lightning Impulse
Currents,” in 2019 International Symposium on Lightning Protection (XV SIPDA),
Sep. 2019, pp. 1–6. doi: 10.1109/SIPDA47030.2019.8951605 | |
dc.relation | J. A. Cristancho, C., J. E. Rodríguez, M., C. A. Rivera G., and F. Román, “Lightning
Incident with Multiple Natives Injured in the Sierra Nevada de Santa Marta -
Colombia : Description of Scenario,” in 2019 International Symposium on Lightning
Protection (XV SIPDA), Sep. 2019, pp. 1–7. doi:
10.1109/SIPDA47030.2019.8951570 | |
dc.relation | IEC 62305-3, Protection against lightning - Part 3: Physical damage to structures
and life hazard, vol. IEC 62305-3:2010. 2010, p. 313 | |
dc.relation | C. Bouquegneau, “External lightning protection system,” in Lightning protection, V.
Cooray, Ed., in IET Power and Energy Series, no. 58. London, UK: The Institution of
Electrical Engineers, 2010, pp. 307–354. [Online]. Available: www.theiet.org | |
dc.relation | V. Cooray, “Basic Principles of Lightning Protection,” in An Introduction to Lightning,
Springer Netherlands, 2015, pp. 301–330. doi: 10.1007/978-94-017-8938-7_17 | |
dc.relation | J. A. Cristancho C., J. E. Rodriguez M., C. A. Rivera G., F. Roman, and J. J.
Pantoja, “High Current Tests over Conductive Fabrics,” in 2018 International
Conference on Electromagnetics in Advanced Applications (ICEAA), Sep. 2018, pp.
428–432. doi: 10.1109/ICEAA.2018.8520351 | |
dc.relation | V. Rakov, “Lightning Discharge and Fundamentals of Lightning Protection,” Journal
of Lightning Research, Jun. 2012, doi: 10.2174/1652803401204010003 | |
dc.relation | Ministerio de Minas y Energía, Reglamento Técnico de Instalaciones Eléctricas
RETIE, vol. Anexo general. 2013. [Online]. Available: http://www.minminas.gov.co | |
dc.relation | IEC webstore, “IEC Webstore - International Electrotechnical Commission,” IEC
Online Collections. https://webstore.iec.ch/ (accessed Jun. 07, 2021) | |
dc.relation | “IEEE SA - The IEEE Standards Association - Home.” https://standards.ieee.org/
(accessed Jun. 10, 2021) | |
dc.relation | “ABNT Catalogo.” https://www.abntcatalogo.com.br/ (accessed Jun. 10, 2021) | |
dc.relation | “ICONTEC e-Collection.” https://ecollection.icontec.org/ (accessed Jun. 10, 2021) | |
dc.relation | IEC 62305-4, Protection against lightning - Part 4: Electrical and electronic systems
within structures, vol. IEC 62305-4:2010. 2010, p. 92 | |
dc.relation | M. A. Cooper, C. J. Andrews, R. L. Holle, R. Blumenthal, and N. Navarrete-Aldana,
“Lightning-Related Injuries and Safety,” in Auerbach’s Wilderness Medicine, P. S.
Auerbach, Ed., 7th edition.Philadelphia, PA: Elsevier, 2017, pp. 71-117.e7 | |
dc.relation | J. A. Cristancho C., C. Rivera, J. J. Pantoja, and F. Román, “Nonfatal lightning
injuries in Colombia: Case reports,” in 2015 International Symposium on Lightning
Protection (XIII SIPDA), Sep. 2015, pp. 157–160. doi:
10.1109/SIPDA.2015.7339328 | |
dc.relation | M. A. Cooper and R. L. Holle, Reducing Lightning Injuries Worldwide. in Springer
Natural Hazards. Springer International Publishing, 2019. Accessed: Jun. 14, 2018.
[Online]. Available: //www.springer.com/la/book/9783319775616 | |
dc.relation | IEC TS 60479-1, IEC TS 60479-1, vol. Effects of current on human beings and
livestock-Part 1: General aspects. 2018, p. 72 | |
dc.relation | IEEE Std 80-2013, IEEE Guide for Safety in AC Substation Grounding. 2015, pp. 1–
226 | |
dc.relation | IEC/TR 62713, Safety procedures for reduction of risk outside a structure, vol.
IEC/TR 62713:2013. 2013 | |
dc.relation | R. H. Golde and W. R. Lee, “Death by lightning,” Proc. Inst. Electr. Eng., vol. 123,
no. 10, pp. 1163–1180, Oct. 1976, doi: 10.1049/piee.1976.0210 | |
dc.relation | N. Kitagawa, K. Kinoshita, and T. Ishikawa, “Discharge experiments using dummies
and rabbits simulating lightning strokes on human bodies,” Int. J. Biometeorol., vol.
17, no. 3, pp. 239–241, Sep. 1973, doi: 10.1007/BF01804616 | |
dc.relation | P. Hasgall et al., “IT’IS Database for thermal and electromagnetic parameters of
biological tissues. Version 4.0.” IT’IS Foundation, May 15, 2018. doi:
10.13099/VIP21000-04-0. itis.swiss/database | |
dc.relation | Oxford University Press, “Oxford Learner’s Dictionaries,” Oxford Learner’s
Dictionaries. https://www.oxfordlearnersdictionaries.com/ (accessed Feb. 26, 2021) | |
dc.relation | European Food Safety Authority, “Hazard vs. Risk,” Hazard vs. Risk.
https://www.efsa.europa.eu/es/discover/infographics/hazard-vs-risk (accessed Jun.
19, 2021) | |
dc.relation | IEEE Std 100-2000, The Authoritative Dictionary of IEEE Standards Terms, Seventh
Edition. 2000, pp. 1–1362 | |
dc.relation | C. C. for O. H. and S. Government of Canada, “Hazard and Risk : OSH Answers,”
Feb. 26, 2021. https://www.ccohs.ca/ (accessed Feb. 26, 2021) | |
dc.relation | J. A. Cristancho C., J. E. Rodriguez M., and F. Román, “Revisiting a lightningcaused trauma case in a pregnancy women,” presented at the Work in progress,
unpublished 2021 | |
dc.relation | C. W. Althaus, “Injury from lightning strike while using mobile phone,” BMJ, vol. 333,
no. 7558, p. 96, Jul. 2006 | |
dc.relation | T. Mallinson, “Understanding the correct assessment and management of lightning
injuries,” J. Paramed. Pract., vol. 5, pp. 196–201, Apr. 2013, doi:
10.12968/jpar.2013.5.4.196 | |
dc.relation | J. D. Jensen, J. Thurman, and A. L. Vincent, “Lightning Injuries,” in StatPearls,
Treasure Island (FL): StatPearls Publishing, 2021. Accessed: Mar. 27, 2021.
[Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK441920/ | |
dc.relation | P. S. Auerbach, T. A. Cushing, and N. S. Harris, Auerbach’s wilderness medicine.
2017 | |
dc.relation | G. Berger, “Lightning-caused accidents and injuries to humans,” in Proc. of
International symposium on lightning protection (IX SIPDA), Foz de Iguaçu, Brazil,
Nov. 2007 | |
dc.relation | M. M. Frydenlund, Lightning Protection for People and Property, 1st ed. Boston, MA:
Springer, 1993. doi: 10.1007/978-1-4684-6548-8_1 | |
dc.relation | C. Gomes, “Lightning Related Human Risks and Risk Management,” Am. J. Manag.
Sci. Eng., vol. 2, pp. 65–79, Jan. 2017 | |
dc.relation | M. A. Cooper, R. L. Holle, and C. J. Andrews, “Distribution of lightning injury
mechanisms,” in 2010 30th International Conference on Lightning Protection (ICLP),
Sep. 2010, pp. 1–4. doi: 10.1109/ICLP.2010.7845948 | |
dc.relation | N. Kitagawa, S. Turumi, T. Ishikawa, and M. Ohashi, “The nature of lightning
discharges on human bodies and the basis for safety and protection,” Conf. Proc.
18th ICLP 1985, vol. Session 6, 1985 | |
dc.relation | K. Berger, “Sugestions for the Protection of Persons and Groups of Persons against
Lightning Hazards, with an appendix on generation and characteristics of lightning,”
Jt. Comm. Athmospheric Electr. IAGA IAMAP Union Géod. Géophysique Int., p. 18,
Jun. 1971 | |
dc.relation | K. Zafren, B. Durrer, J.-P. Herry, H. Brugger, and ICAR and UIAA MEDCOM,
“Lightning injuries: prevention and on-site treatment in mountains and remote areas.
Official guidelines of the International Commission for Mountain Emergency
Medicine and the Medical Commission of the International Mountaineering and
Climbing Federation (ICAR and UIAA MEDCOM),” Resuscitation, vol. 65, no. 3, pp.
369–372, Jun. 2005, doi: 10.1016/j.resuscitation.2004.12.014 | |
dc.relation | J. Gookin, “Backcountry lightning risk management,” presented at the 21st
International Lightning Detection and 2nd International Lightning Meteorology
Conference, Orlando, FL - USA, 2010. [Online]. Available:
http://rendezvous.nols.edu//content/view/1718/739/ | |
dc.relation | VDE ABB, “Blitzgefahren, Blitzschutz, Überspannungsschutz - Grafiken zum
Download - VDE Blitzschutz.” https://www.vor-blitzen-schuetzen.eu/de/downloadgrafiken (accessed Jul. 20, 2021) | |
dc.relation | J. Cristancho C., H. Suárez, Y. Urbano, and F. Román, “Fatal livestock lightning
accident in Colombia,” in 2017 International Symposium on Lightning Protection (XIV
SIPDA), Oct. 2017, pp. 295–298. doi: 10.1109/SIPDA.2017.8116939 | |
dc.relation | N. Kitagawa, “The actual mechanisms of so-called step voltage injuries,” Conf. Proc.
25th ICLP 2000, vol. Session 8, Sep. 2000 | |
dc.relation | ITU-R P.229, Electrical characteristics of the surface of the earth, vol. ITU-R P.229-
6:1990. 1990, pp. 60–66 | |
dc.relation | J. D. McNeill, “Electrical conductivity of soils and rocks,” Geonics Limited, Ontario,
Canada, Oct. 1980 | |
dc.relation | J. A. Cristancho C., J. J. Pantoja, C. A. Rivera, and F. Roman, “Analysis of two
nonfatal lightning accidents in Colombia,” Electr. Power Syst. Res., vol. 153, pp.
159–169, Dec. 2017, doi: 10.1016/j.epsr.2016.12.021 | |
dc.relation | D. S. Gazzana, A. S. Bretas, G. A. D. Dias, M. Telló, D. W. P. Thomas, and C.
Christopoulos, “A study of human safety against lightning considering the grounding
system and the evaluation of the associated parameters,” Electr. Power Syst. Res.,
vol. 113, pp. 88–94, Agosto 2014, doi: 10.1016/j.epsr.2014.03.015 | |
dc.relation | Ó. Díaz, F. Santamaría, A. Alarcón, and F. Román, “Comportamiento De La
Impedancia De Aterrizamiento De Una Víctima Humana Impactada Por Un Rayo,”
Tecnura, 2008. Accessed: Apr. 05, 2016. [Online]. Available:
http://www.redalyc.org/articulo.oa?id=257020605005 | |
dc.relation | J. Wang, A. C. Liew, and M. Darveniza, “Extension of dynamic model of impulse
behavior of concentrated grounds at high currents,” in IEEE Power Engineering
Society General Meeting, 2004., Jun. 2004, p. 420 Vol.1-. doi:
10.1109/PES.2004.1372829 | |
dc.relation | S. J. Spano, D. Campagne, G. Stroh, and M. Shalit, “A Lightning Multiple Casualty
Incident in Sequoia and Kings Canyon National Parks,” Wilderness Environ. Med.,
vol. 26, no. 1, pp. 43–53, Mar. 2015, doi: 10.1016/j.wem.2014.06.010 | |
dc.relation | A. E. Carte, R. B. Anderson, and M. A. Cooper, “A large group of children struck by
lightning,” Ann. Emerg. Med., vol. 39, no. 6, pp. 665–670, Jun. 2002 | |
dc.relation | K. L. Cummins, E. P. Krider, M. Olbinski, and R. L. Holle, “A case study of lightning
attachment to flat ground showing multiple unconnected upward leaders,”
Atmospheric Res., vol. 202, pp. 169–174, 2018, doi:
10.1016/j.atmosres.2017.11.007 | |
dc.relation | J. Aleccia, “Decades later, hair-raising photo still a reminder of lightning danger,”
NBC Health News, Jul. 13, 2013. http://www.nbcnews.com/healthmain/decadeslater-hair-raising-photo-still-reminder-lightning-danger-6C10791362 (accessed Jul.
23, 2022) | |
dc.relation | M. A. Cooper, “A fifth mechanism of lightning injury,” Acad. Emerg. Med. Off. J. Soc.
Acad. Emerg. Med., vol. 9, no. 2, pp. 172–174, Feb. 2002 | |
dc.relation | Daily Mail Reporter, “How to know if you’re about to be hit by lightning: The story
behind a shocking picture of brothers with their hair standing on end used in many
safety campaigns,” Mail Online, Jul. 31, 2013.
https://www.dailymail.co.uk/news/article-2381677/How-know-youre-struck-lightningPicture-brothers-hair-end-minutes-before.html (accessed Jul. 23, 2022) | |
dc.relation | R. L. Holle, “The Number of Documented Global Lightning Fatalities,” 24th Int. Light.
Detect. Conf. 6th Int. Light. Meteorol. Conf., 2016 | |
dc.relation | O. J. F. van Waes, P. C. van de Woestijne, and J. A. Halm, “‘Thunderstruck’:
Penetrating Thoracic Injury From Lightning Strike,” Ann. Emerg. Med., vol. 63, no. 4,
pp. 457–459, Abril 2014, doi: 10.1016/j.annemergmed.2013.08.021 | |
dc.relation | J. R. Dwyer and M. A. Uman, “The physics of lightning,” Phys. Rep., vol. 534, no. 4,
pp. 147–241, 2014, doi: 10.1016/j.physrep.2013.09.004 | |
dc.relation | M. Ahrens, “Lightning fires and lightning strikes,” National Fire Protection Association
- NFPA, Quincy, MA, Analysis NFPA No. USS51, Jun. 2013 | |
dc.relation | E. and C. C. Canada, “Lightning and forest fires,” Jul. 29, 2010.
https://www.canada.ca/en/environment-climate-change/services/lightning/forestfires.html (accessed Aug. 14, 2021) | |
dc.relation | J. Schwartz and V. Penney, “In the West, Lightning Grows as a Cause of Damaging
Fires,” The New York Times, Oct. 23, 2020. Accessed: Aug. 14, 2021. [Online].
Available: https://www.nytimes.com/interactive/2020/10/23/climate/west-lightningwildfires.html | |
dc.relation | N. G. Gortázar, “Reportagem | O que há por trás das chamas na Amazônia,” EL
PAÍS, Nov. 04, 2019.
https://brasil.elpais.com/brasil/2019/10/22/eps/1571696000_250069.html (accessed
Aug. 14, 2021) | |
dc.relation | D. E. Villamil, N. Navarrete, and M. A. Cooper, “Keraunoparalysis and burning
thatch: A proposed explanation for severe lightning injuries reported in developing
countries,” Electr. Power Syst. Res., vol. 197, p. 107301, Aug. 2021, doi:
10.1016/j.epsr.2021.107301 | |
dc.relation | World Health Organization, The injury chart book : a graphical overview of the global
burden of injuries. World Health Organization - WHO, 2002. Accessed: Jun. 19,
2021. [Online]. Available: https://apps.who.int/iris/handle/10665/42566 | |
dc.relation | A. E. Ritenour, M. J. Morton, J. G. McManus, D. J. Barillo, and L. C. Cancio,
“Lightning injury: A review,” Burns, vol. 34, no. 5, pp. 585–594, Aug. 2008, doi:
10.1016/j.burns.2007.11.006 | |
dc.relation | F. Huss, U. Erlandsson, V. Cooray, G. Kratz, and F. Sjöberg, “Blixtolyckor - mix av
elektriskt, termiskt och multipelt trauma,” Läkartidningen, vol. 101, pp. 2328–2331,
2004 | |
dc.relation | IEC/TR 60479-4, Effects of current on human beings and livestock – Part 4: Effects
of lightning strokes, vol. IEC/TR 60479-4:2020. 2020 | |
dc.relation | DIPSE-EJC, “Data from ‘Dirección de preservación de la integridad y seguridad del
ejército - DIPSE, Comando de Personal - COPER, Ejército de Colombia - EJC’
about Lightning Accidents in Colombian Army 2003-2013,” Feb. 2017 | |
dc.relation | C. Andrews, “Electrical aspects of lightning strike to humans,” in The lightning flash,
V. Cooray, Ed., in IET Power and Energy Series, no. 69. London, UK: The Institution
of Electrical Engineers, 2014, pp. 701–723. doi: 10.1007/978-94-017-8938-7_17 | |
dc.relation | G. A. D. Dias, M. Telló, D. S. Gazzana, and G. C. Potier, “Revisiting lightning body
model,” in 2009 International Symposium on Lightning Protection (X SIPDA),
Curitiba, Nov. 2009, pp. 695–698 | |
dc.relation | C. Andrews, “Electrical aspects of lightning strike to humans,” in The lightning flash,
V. Cooray, Ed., in IET Power and Energy Series, no. 34. London, UK: The Institution
of Electrical Engineers, 2003, pp. 549–574. doi: 10.1007/978-94-017-8938-7_17 | |
dc.relation | F. Román, A. Alarcón, and F. Santamaría, “Analysis of a lightning accident in Gavle,
Sweden,” in 2005 International Symposium on Lightning Protection (VIII SIPDA),
Sao Paulo, Oct. 2005, pp. 324–328 | |
dc.relation | N. R. Misbah, M. Z. A. A. Kadir, and C. Gomes, “Modelling and analysis of different
aspect of mechanisms in lightning injury,” in 2011 4th International Conference on
Modeling, Simulation and Applied Optimization (ICMSAO), Apr. 2011, pp. 1–5. doi:
10.1109/ICMSAO.2011.5775551 | |
dc.relation | V. Amoruso and F. Lattarulo, “Diakoptics for electrostatics,” IEE Proc. - Sci. Meas.
Technol., vol. 141, no. 5, pp. 317–323, Sep. 1994, doi: 10.1049/ip-smt:19941070 | |
dc.relation | F. B. Sachse, C. D. Werner, K. Meyer-Waarden, and O. Dössel, “Development of a
human body model for numerical calculation of electrical fields,” Comput. Med.
Imaging Graph., vol. 24, no. 3, pp. 165–171, May 2000, doi: 10.1016/S0895-
6111(00)00016-1 | |
dc.relation | L. B. Gordon, B. K. Appelt, and J. W. Mitchell, “The complex dielectric nature of the
human body,” in 1998 Annual Report Conference on Electrical Insulation and
Dielectric Phenomena (Cat. No.98CH36257), Oct. 1998, pp. 577–580 vol. 2. doi:
10.1109/CEIDP.1998.732963 | |
dc.relation | C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological
tissues: I. Literature survey,” Phys. Med. Biol., vol. 41, no. 11, p. 2231, 1996, doi:
10.1088/0031-9155/41/11/001 | |
dc.relation | S. Suchanek, V. Hinrichsen, J. Gao, I. Munteanu, R. Brocke, and K.-P. Müller,
“Effects of step voltages on the human body; in German (Auswirkungen von
Schrittspannungen auf den Menschen),” in VDE Fachberichte, in 9. VDE/ABBBlitzschutztagung : Vorträge der 9. VDE/ABB-Fachtagung. Neu-Ulm, Berlin: VDEVerl., 2011, pp. 33–37 | |
dc.relation | W. A. Chisholm and D.-H. Nguyen, “Coordinating the Einthoven Body Impedance
Model for ECG Signals with IEC 60479-1:2018 Electrocution Heart Current Factors:
Invited Lecture - Extended Summary,” in 2021 35th International Conference on
Lightning Protection (ICLP) and XVI International Symposium on Lightning
Protection (SIPDA), Sep. 2021, pp. 01–03. doi:
10.1109/ICLPandSIPDA54065.2021.9627369 | |
dc.relation | A. Lemosquet, L. de Carlan, and I. Clairand, “Voxel anthropomorphic phantoms:
review of models used for ionising radiation dosimetry,” Radioprotection, vol. 38, no.
4, Art. no. 4, Oct. 2003, doi: 10.1051/radiopro:2003020 | |
dc.relation | M. Caon, “Voxel-based computational models of real human anatomy: a review,”
Radiat. Environ. Biophys., vol. 42, no. 4, pp. 229–235, Feb. 2004, doi:
10.1007/s00411-003-0221-8 | |
dc.relation | K. Yamazaki, “Assessment methods for electric and magnetic fields in low and
intermediate frequencies related to human exposures and the status of their
standardization,” Electron. Commun. Jpn., vol. 103, no. 1–4, pp. 10–18, 2020, doi:
10.1002/ecj.12233 | |
dc.relation | International Commission on Non-Ionizing Radiation Protection (ICNIRP),
“Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to
100 kHz),” Health Phys., vol. 99, no. 6, pp. 818–836, Dec. 2010, doi:
10.1097/HP.0b013e3181f06c86 | |
dc.relation | The National Library of Medicine, “The Visible Human Project.,” Visible Human
Project. https://www.nlm.nih.gov/research/visible/visible_human.html (accessed Apr.
08, 2021 | |
dc.relation | J. Gao, “Generation of Postured Voxel-based Human Models Used for
Electromagnetic Applications,” Ph.D. Thesis, Technische Universität, Darmstadt,
2012. Accessed: Dec. 14, 2016. [Online]. Available: http://tuprints.ulb.tudarmstadt.de/2866/ | |
dc.relation | S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues:
II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., vol. 41,
no. 11, p. 2251, 1996, doi: 10.1088/0031-9155/41/11/002 | |
dc.relation | S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues:
III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol.
41, no. 11, p. 2271, 1996, doi: 10.1088/0031-9155/41/11/003 | |
dc.relation | M. Nikolovski, “Detailed Modeling of the Human Body in Motion to Investigate the
Electromagnetic Influence of Fields in a Realistic Environment,” Ph.D. Thesis,
Technische Universität, Darmstadt, 2017. Accessed: Dec. 14, 2020. [Online].
Available: https://d-nb.info/1153123460/34 | |
dc.relation | Dassault Systèmes, “CST Studio Suite 3D EM simulation and analysis software,”
2021. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/
(accessed Nov. 05, 2021) | |
dc.relation | IT’IS Foundation, “Tissue Properties Database V4.0.” IT’IS Foundation, 2018. doi:
10.13099/VIP21000-04-0 | |
dc.relation | IT’IS Foundation, “Virtual Population & ViZoo,” Virtual Population & ViZoo.
https://itis.swiss/virtual-population/virtual-population/overview/ (accessed Jan. 05,
2022) | |
dc.relation | J. W. Massey, “Creating AustinMan: An Electromagnetic Voxel Model of the Visible
Human,” Undergraduate Thesis, University of Texas at Austin, Darmstadt, 2011.
Accessed: Dec. 14, 2016. [Online]. Available:
https://sites.utexas.edu/austinmanaustinwomanmodels/files/2018/05/CreatingAustin
Man.pdf | |
dc.relation | I. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer,
“Computerized three-dimensional segmented human anatomy,” Med. Phys., vol. 21,
no. 2, pp. 299–302, Feb. 1994, doi: 10.1118/1.597290 | |
dc.relation | M. R. Golsefidi, Z. Bakhtiary, E. Sharifi, M. Saviz, and R. Faraji-dana, “Development
of a free anthropomorphic voxel model of human body for wide-band computational
electromagnetics dosimetry,” 2020. doi: 10.22060/EEJ.2020.18179.5346 | |
dc.relation | A. Cruz Bernal, “Evaluación del riesgo por rayos para Colombia,” Tesis de Maestría,
Universidad Nacional de Colombia - Sede Bogotá, Bogotá D.C., 2019. Accessed:
Sep. 11, 2020. [Online]. Available:
https://www.researchgate.net/publication/341714057_Evaluacion_del_riesgo_por_ra
yos_para_Colombia | |
dc.relation | J. A. Latorre, J. E. Rodriguez, C. A. Martínez, J. A. Cristancho C., and F. Román,
“Characterization of a Metallic Pearl-like Necklace stroked by lightning: preliminary
results,” in 2016 33rd International Conference on Lightning Protection (ICLP),
Estoril, Portugal, Sep. 2016. doi: 10.1109/ICLP.2016.7791466 | |
dc.relation | Q. C. A. Martínez, F. Román, and J. A. Cristancho, “Determination of the lightning
current from its thermal effects,” in 2016 33rd International Conference on Lightning
Protection (ICLP), Estoril, Portugal, Sep. 2016, pp. 1–5. doi:
10.1109/ICLP.2016.7791464 | |
dc.relation | F. Hanaffi, W. H. Siew, and I. Timoshkin, “Step voltages in a ground-grid arising from
lightning current,” in 2015 Asia-Pacific International Conference on Lightning, Aichi,
Jun. 2015. Accessed: May 18, 2019. [Online]. Available:
https://strathprints.strath.ac.uk/52648/ | |
dc.relation | C. Gomes, M. Z. A. A. Kadir, and M. A. Cooper, “Lightning safety scheme for
sheltering structures in low-income societies and problematic environments,” in 2012
International Conference on Lightning Protection (ICLP), Sep. 2012, pp. 1–11. doi:
10.1109/ICLP.2012.6344404 | |
dc.relation | K. Galster, R. Hodnick, and R. P. Berkeley, “Lightning Strike in Pregnancy With Fetal
Injury,” Wilderness Environ. Med., vol. 27, no. 2, pp. 287–290, Jun. 2016, doi:
10.1016/j.wem.2016.02.006 | |
dc.relation | J. R. Maxwell, C. Kamm, C. D. Grassham, J. Fuller, J. R. Lowe, and V. Ianus, “When
lightning strikes: a case of early childhood outcome following maternal lightning
strike,” Acta Paediatr., vol. 108, no. 3, pp. 557–558, Mar. 2019, doi:
10.1111/apa.14554 | |
dc.relation | K. Berger, “Blitzforschung und Personen-Blitzschutz,” ETZ-A, vol. 92, pp. 508–511,
Jun. 1971 | |
dc.relation | G. Serre, “Lightning protection for individuals, integrated into clothing, tents and
sleeping bags, comprises braided metal threads incorporated into fabric to form
Faraday cage (Integrierte Blitzschutzvorrichtung für Kleidung, Zelte und
Schlafsäcke),” Germany, DE102006057439A1, Jun. 19, 2008 [Online]. Available:
https://patents.google.com/patent/DE102006057439A1/en?oq=DE102006057439A1 | |
dc.relation | H. Prinz, J. Wiesinger, and R. Koenig, “Emergency shelter in the form of a tent or the
like (Notunterkunft, insbesondere Zelt),” United States, US3547136A, Dec. 15, 1970
[Online]. Available:
https://patents.google.com/patent/US3547136A/en?oq=US3547136A | |
dc.relation | K. Sobolewski and K. Jania, “The concept of using the tent structure as a measure of
protection against lightning,” in Proceeding 2015 16th International Conference on
Computational Problems of Electrical Engineering (CPEE), Sep. 2015, pp. 192–195.
doi: 10.1109/CPEE.2015.7333373 | |
dc.relation | K. Sobolewski, A. Łasica, and P. Sul, “Lightning safety of tourists infrastructures,” in
Proceedings 2016 17th International Conference on Computational Problems of
Electrical Engineering, CPEE 2016, Sep. 2016 | |
dc.relation | About the NWS and The National Weather Service (NWS), “Lightning Safety Tips
and Resources,” Lightning Safety Tips and Resources.
https://www.weather.gov/safety/lightning (accessed Mar. 03, 2021) | |
dc.relation | R. A. Chapman, Ed., Smart textiles for protection. in Woodhead Publishing Series in
Textiles, no. 133. UK: Woodhead Publishing, 2013. doi:
10.1533/9780857097620.frontmatter | |
dc.relation | S. Chapman, D. Hewett, and L. Trefethen, “Mathematics of the Faraday Cage,”
SIAM Rev., vol. 57, pp. 398–417, Jan. 2015, doi: 10.1137/140984452 | |
dc.relation | R. Fitzpatrick, Maxwell’s Equations and the Principles of Electromagnetism.
Hingham, MA: Jones & Bartlett Publishers, 2008 | |
dc.relation | V. A. Rakov, “Electromagnetic Methods of Lightning Detection,” Surv. Geophys., vol.
34, no. 6, pp. 731–753, Nov. 2013, doi: 10.1007/s10712-013-9251-1 | |
dc.relation | M. Azadifar et al., “Analysis of lightning-ionosphere interaction using simultaneous
records of source current and 380 km distant electric field,” J. Atmospheric Sol.-Terr.
Phys., vol. 159, pp. 48–56, Jun. 2017, doi: 10.1016/j.jastp.2017.05.010 | |
dc.relation | IEEE Std 1410-2010, IEEE Guide for Improving the Lightning Performance of
Electric Power Overhead Distribution Lines. 2011, p. 73 | |
dc.relation | E. H. Williams, “Magnetic Properties of Copper-Nickel Alloys,” Phys. Rev., vol. 38,
no. 4, pp. 828–831, Aug. 1931, doi: 10.1103/PhysRev.38.828 | |
dc.relation | J. R. Davis, ASM Specialty Handbook: Copper and Copper Alloys. Materials Park,
OH: ASM International, 2001 | |
dc.relation | R. Kithil and V. Rakov, “Small Shelters and Safety from Lightning,” in Proceedings of
the 2001 Aerospace Congress on CD-ROM, in SAE TECHNICAL PAPER SERIES,
vol. 2001- 01–2896. Seattle, Washington: SAE Internbational, Sep. 2001. doi:
10.4271/2001-01-2896 | |
dc.relation | C. Tovar, D. Aranguren, J. López, J. Inampués, and H. Torres, “Lightning risk
assessment and thunderstorm warning systems,” in 2014 International Conference
on Lightning Protection (ICLP), Oct. 2014, pp. 1870–1874. doi:
10.1109/ICLP.2014.6973434 | |
dc.relation | P. Fernandes Costa, “Prevenção em ambientes abertos: os sistemas de alerta de
trovoadas.”
https://www.arandanet.com.br/revista/em/materia/2016/11/01/prevencao_em_ambie
ntes.html (accessed Aug. 11, 2022) | |
dc.relation | M. Becerra and V. Cooray, “On the Interaction of Lightning Upward Connecting
Positive Leaders With Humans,” IEEE Trans. Electromagn. Compat., vol. 51, no. 4,
pp. 1001–1008, Nov. 2009, doi: 10.1109/TEMC.2009.2033265 | |
dc.relation | C. Davis et al., “Wilderness Medical Society Practice Guidelines for the Prevention
and Treatment of Lightning Injuries: 2014 Update,” Wilderness Environ. Med., vol.
25, no. 4, Supplement, pp. S86–S95, Dec. 2014, doi: 10.1016/j.wem.2014.08.011 | |
dc.relation | J. Gookin, “Lightning safety for cavers,” National Speleological Society News, vol.
Part 2, no. June 2003, pp. 8–10, Jun. 2003 | |
dc.relation | AS/NZS 1768:2007, Lightning protection, vol. Australian/New Zealand Standard
AS/NZS 1768:2007. 2007 | |
dc.relation | R. H. Golde, “A plain man’s guide to lightning protection,” Electron. Power, vol. 15,
no. 3, pp. 84–86, Mar. 1969, doi: 10.1049/ep.1969.0085 | |
dc.relation | J. A. Cristancho, C. A. Rivera, J. E. Rodriguez, J. J. Pantoja, L. K. Herrera, and F.
Roman, “Lightning Impulse Current Tests on Conductive Fabrics,” ArXiv191105162
Phys., Nov. 2019, Accessed: Dec. 09, 2019. [Online]. Available:
http://arxiv.org/abs/1911.05162 | |
dc.relation | J. A. Cristancho, C. A. Rivera G., J. E. Rodriguez M., J. J. Pantoja A., L. K. Herrera
Q., and F. Roman, “Lightning Impulse Current Tests on Conductive Fabrics,” Hal-02356763, Nov. 2019, Accessed: Feb. 19, 2020. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02356763 | |
dc.relation | “Medical Textile Construction - Knit, Woven, Non-Woven & Braided Surgical Fabric,”
ATEX Technologies. https://www.atextechnologies.com/textile-constructionoverview/ (accessed Sep. 13, 2022) | |
dc.relation | J. A. Cristancho, C. A. Rivera, J. E. Rodriguez, J. J. Pantoja, L. K. Herrera, and F.
Roman, “Lightning Impulse Current Tests on some Electroconductive Fabrics,” J.
Appl. Res. Technol., vol. 21, no. 2, pp. 241–255, Apr. 2023, doi:
10.22201/icat.24486736e.2023.21.2.1605 | |
dc.relation | N. Navarrete-Aldana, M. A. Cooper, and R. L. Holle, “Lightning fatalities in Colombia
from 2000 to 2009,” Nat. Hazards, vol. 74, no. 3, pp. 1349–1362, May 2014, doi:
10.1007/s11069-014-1254-9 | |
dc.relation | OSHA-NOAA, “Lightning Safety When Working Outdoors,” FactSheet, vol. FS-3863,
p. 5, May 2016 | |
dc.relation | K. M. Walsh, B. Bennett, M. A. Cooper, R. L. Holle, R. Kithil, and R. E. López,
“National Athletic Trainers’ Association Position Statement: Lightning Safety for
Athletics and Recreation,” J. Athl. Train., vol. 35, no. 4, pp. 471–477, 2000 | |
dc.relation | National Fire Protection Association, NFPA 780 - Standard for the installation of
Lightning Protection Systems - 2017, NFPA. 2017 | |
dc.relation | A. M. Grancarić et al., “Conductive polymers for smart textile applications,” J. Ind.
Text., vol. 48, no. 3, pp. 612–642, Sep. 2018, doi: 10.1177/1528083717699368 | |
dc.relation | M. Miao and J. H. Xin, Engineering of High-Performance Textiles. Woodhead
Publishing, 2017 | |
dc.relation | W. C. Smith, Smart Textile Coatings and Laminates. Woodhead Publishing, 2010 | |
dc.relation | J. Baltušnikaitė, S. Varnaitė-Žuravliova, V. Rubežienė, R. Rimkutė, and R. Verbienė,
“Influence of Silver Coated Yarn Distribution on Electrical and Shielding Properties of
Flax Woven Fabrics —,” Fibres Text. East. Eur., vol. 22, no. 2(104), pp. 84–90,
2014 | |
dc.relation | J. Wang, P. Xue, X. Tao, and T. Yu, “Strain Sensing Behavior and Its Mechanisms of
Electrically Conductive PPy-Coated Fabric,” Adv. Eng. Mater., vol. 16, no. 5, pp.
565–570, 2014, doi: 10.1002/adem.201300407 | |
dc.relation | J. Banaszczyk, A. Anca, and G. D. Mey, “Infrared thermography of electroconductive
woven textiles,” Quant. InfraRed Thermogr. J., vol. 6, no. 2, pp. 163–173, Dec. 2009,
doi: 10.3166/qirt.6.163-173 | |
dc.relation | Y. Zhao, J. Tong, C. Yang, Y. Chan, and L. Li, “A simulation model of electrical
resistance applied in designing conductive woven fabrics,” Text. Res. J., vol. 86, no.
16, pp. 1688–1700, Oct. 2016, doi: 10.1177/0040517515590408 | |
dc.relation | S. Varnaitė-Žuravliova, J. Baltušnikaitė-Guzaitienė, L. Valasevičiūtė, R. Verbienė,
and A. Abraitienė, “Assessment of Electrical Characteristics of Conductive Woven
Fabrics,” Am. J. Mech. Ind. Eng., vol. 1, no. 3, p. 38, Oct. 2016, doi:
10.11648/j.ajmie.20160103.12 | |
dc.relation | J. Banaszczyk, A. Schwarz, G. De Mey, and L. Van Langenhove, “The Van der
Pauw method for sheet resistance measurements of polypyrrole-coated paraaramide woven fabrics,” J. Appl. Polym. Sci., vol. 117, no. 5, pp. 2553–2558, 2010,
doi: 10.1002/app.32186 | |
dc.relation | ASTM D4496−13, Test Method for D-C Resistance or Conductance of Moderately
Conductive Materials. 2013. doi: 10.1520/D4496-13 | |
dc.relation | ASTM F390-11, Test Method for Sheet Resistance of Thin Metallic Films With a
Collinear Four-Probe Array. 2011, p. 5. doi: 10.1520/F0390-11 | |
dc.relation | E. Kuffel, W. S. Zaengl, and J. Kuffel, High Voltage Engineering Fundamentals.
Oxford: Newnes, 2000. Accessed: Apr. 06, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B9780750636346500125 | |
dc.relation | V. A. Rakov et al., “CIGRE technical brochure on lightning parameters for
engineering applications,” in 2013 International Symposium on Lightning Protection
(XII SIPDA), Oct. 2013, pp. 373–377. doi: 10.1109/SIPDA.2013.6729246 | |
dc.relation | A. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from
the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,”
Appl. Phys. Lett., vol. 105, no. 12, p. 123109, Sep. 2014, doi: 10.1063/1.4895630 | |
dc.relation | M. A. Cooper, C. J. Andrews, R. L. Holle, R. Blumenthal, and N. Navarrete-Aldana,
“Lightning related-injures and safety,” in Auerbach’s Wilderness Medicine, P. S.
Auerbach, Ed., 7th edition.Philadelphia, PA: Elsevier, 2016, pp. 71–117 | |
dc.relation | J. A. Cristancho C., J. J. Pantoja, C. Rivera, and F. Roman, “Analysis of two nonfatal
lightning accidents in Colombia,” Electr. Power Syst. Res., vol. 153, pp. 159–169,
Dec. 2016, doi: 10.1016/j.epsr.2016.12.021 | |
dc.relation | T. Dias, Ed., Electronic Textiles: Smart Fabrics and Wearable Technology, 1 edition.
Woodhead Publishing, 2015 | |
dc.relation | C. Cruz, E. Rentería, and F. Román, “Statistics of the Colombian National Army
lightning accidents,” in 2013 International Symposium on Lightning Protection (XII
SIPDA), Oct. 2013, pp. 324–328. doi: 10.1109/SIPDA.2013.6729181 | |
dc.relation | F. Roman et al., “Protección personal contra rayos empleando textiles conductores,”
presented at the ALTAE 2021 - Congreso Iberoamericano en Alta Tensión y
Aislamiento Eléctrico, San José de Costa Rica, Costa Rica: CECACIER, Sep. 2021,
p. 11 | |
dc.relation | ISO 5912:2020, Camping tents — Requirements and test methods, vol. ISO
5912:2020(en). 2020. Accessed: Feb. 26, 2022. [Online]. Available:
https://www.iso.org/obp/ui/#iso:std:iso:5912:ed-5:v1:en | |
dc.relation | J. He, R. Zeng, and B. Zhang, Methodology and technology for power system
grounding. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2013. Accessed: Oct.
11, 2016. [Online]. Available: http://doi.wiley.com/10.1002/9781118255001 | |
dc.relation | J. J. Pantoja et al., “Model for the Estimation of Partial Burst of Ripstop ElectroConductive Fabrics,” in 2020 XXXIIIrd General Assembly and Scientific Symposium
of the International Union of Radio Science, Aug. 2020, pp. 1–4. doi:
10.23919/URSIGASS49373.2020.9232413 | |
dc.relation | J. A. Cristancho et al., “Behavior of an Electroconductive Rip-stop Fabric under 8/20
µs Lightning Current: Preliminary Results,” in 2021 35th International Conference on
Lightning Protection (ICLP) and XVI International Symposium on Lightning
Protection (SIPDA), Sep. 2021, pp. 01–04. doi:
10.1109/ICLPandSIPDA54065.2021.9627333 | |
dc.relation | F. Román et al., “10/350 µs Lightning Impulse Current Behavior of a Conductive
Fabric,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Sep. 2021, pp. 01–
06. doi: 10.1109/ICLPandSIPDA54065.2021.9627391 | |
dc.relation | J. J. Pantoja, C. Rivera, J. Cristancho, J. Rodriguez, and F. Román, “Thermal
Simulation of a Conductive Fabric Sheet Subjected to a Lightning-like Current,” in
2020 International Applied Computational Electromagnetics Society Symposium
(ACES), Jul. 2020, pp. 1–2. doi: 10.23919/ACES49320.2020.9196041 | |
dc.relation | J. J. Pantoja Acosta et al., “Specific Action as a Metric to Determine Thermal
Degradation of Conductive Fabrics Exposed to High Current Impulses,” Prog.
Electromagn. Res., vol. 105, pp. 59–72, 2020, doi: 10.2528/PIERC20052301 | |
dc.relation | J. A. Cristancho, J. E. Rodriguez, and F. Román, “Revisiting a case of lightningcaused trauma in a pregnant woman,” in 2021 35th International Conference on
Lightning Protection (ICLP) and XVI International Symposium on Lightning
Protection (SIPDA), Sep. 2021, pp. 1–6. doi:
10.1109/ICLPandSIPDA54065.2021.9627467 | |
dc.relation | I. W. McAllister, “Surface current density K: an introduction,” IEEE Trans. Electr.
Insul., vol. 26, no. 3, pp. 416–417, Jun. 1991, doi: 10.1109/14.85112 | |
dc.relation | J. Banaszczyk, G. De Mey, A. Schwarz, and L. Van Langenhove, “Current
Distribution Modelling in Electroconductive Textiles,” in 2007 14th International
Conference on Mixed Design of Integrated Circuits and Systems, Jun. 2007, pp.
418–423. doi: 10.1109/MIXDES.2007.4286196 | |
dc.relation | G. Nordberg, “Metals: Chemical Properties and Toxicity, on Encyclopaedia of
Occupational Health and Safety (Part IX, Chapter 63),” Chemicals - 63. Metals:
Chemical Properties and Toxicity, Feb. 20, 2012.
https://www.iloencyclopaedia.org/part-ix-21851/metals-chemical-properties-andtoxicity (accessed Nov. 28, 2022) | |
dc.relation | Nickel Institute, “Nickel and nickel allergic contact dermatitis NACD,” Nickel and
Nickel Allergic Contact Dermatitis policy. https://nickelinstitute.org/ (accessed Nov.
28, 2022) | |
dc.relation | U. S. E. P. A. EPA, “Nickel Compounds.” EPA - United States Environmental
Protection Agency, 2000. [Online]. Available:
https://www.epa.gov/sites/default/files/2016-09/documents/nickle-compounds.pdf | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Analysis and development of a personal portable lightning protection system | |
dc.type | Trabajo de grado - Doctorado | |