dc.contributorRomán Campos, Francisco José
dc.contributorEMC-UN
dc.contributorCristancho Caviativa, Jorge Alejandro [0000000207497078]
dc.contributorCristancho Caviativa, Jorge Alejandro [0001549136]
dc.contributorCristancho Caviativa, Jorge Alejandro [57188691777]
dc.creatorCristancho Caviativa, Jorge Alejandro
dc.date.accessioned2023-08-08T14:48:39Z
dc.date.accessioned2023-08-25T13:07:30Z
dc.date.available2023-08-08T14:48:39Z
dc.date.available2023-08-25T13:07:30Z
dc.date.created2023-08-08T14:48:39Z
dc.date.issued2023-05-19
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/84476
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttps://repositorioslatinoamericanos.uchile.cl/handle/2250/8426937
dc.description.abstractColombia has a very high lightning activity as shown in different published lightning maps. Any activity that takes place outdoors in stormy weather, even more in places recognized as having high lightning activity, at certain times and seasons, increases even more the risk of suffering some type of injury for exposed people. Non-accessible places, such as remote and backcountry locations, worsen this scenario. It is reported for the Colombian National Army in fifteen-year averages, up to 48 soldiers per year victims of lightning strikes. To reduce the lightning risk to health in vulnerable population that cannot avoid their exposure, the most probable mechanisms of injury are analyzed considering some scenarios with existing human models. As a portable shelter requires lightweight lightning protection materials, some types of electroconductive fabrics against standard lightning impulse currents were investigated in the laboratory. Some samples of conductive fabrics were subject to several subsequent lightning-like currents and analyzed, revealing some patterns changes on its surface. Despite the morphological changes, among the tested fabrics, a ripstop conductive fabric showed great potential and proved capable of withstanding several lightning impulse currents, suggesting its suitability for use in personal mobile shelters. A model of a basic portable shelter is proposed and tested in the laboratory. The results show that the basic shelter model can protect human beings against the earth potential rise (EPR) minimizing the risk caused by a close lightning discharge.(Texto tomado de la fuente)
dc.description.abstractColombia tiene una actividad de rayos muy alta como se muestra en diferentes mapas de rayos publicados. Cualquier actividad que se desarrolle a campo abierto durante una tormenta, más aún en lugares reconocidos como de alta actividad de rayos, en determinadas épocas y temporadas, aumenta aún más el riesgo de sufrir algún tipo de lesión para las personas expuestas. Los lugares remotos y de difícil acceso alejados de centros urbanos empeoran este escenario. Para el Ejército Nacional de Colombia se reporta en un promedio de quince años, hasta 48 soldados por año víctimas del impacto de rayos. Para reducir el riesgo del rayo a la salud en la población vulnerable que no puede evitar su exposición, se analizan los mecanismos más probables de lesión considerando algunos escenarios con modelos humanos existentes. Considerando que un refugio portátil para la protección contra rayos requiere materiales livianos, se investigaron en el laboratorio algunos tipos de tejidos electroconductores sometidos a corrientes impulsivas tipo rayo con forma de onda estándar. Algunas muestras de tejidos conductores se sometieron a varias corrientes de rayo subsecuentes y se analizaron, revelando algunos cambios notorios en su superficie. A pesar de los cambios morfológicos, entre los tejidos ensayados, un tejido conductor tipo rip-stop (anti-desgarro) mostró un gran potencial y resistió varias corrientes de impulso de rayo, sugiriendo su uso en refugios móviles para personas. Se propone un modelo de refugio portátil básico al cual se le realizan ensayos de laboratorio. Los resultados muestran que el modelo de refugio básico propuesto podría proteger a los seres humanos contra el aumento del potencial de tierra (EPR – earth potential rise) minimizando el riesgo causado por una descarga de rayo cercana
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Eléctrica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationR. I. Albrecht, S. J. Goodman, D. E. Buechler, R. J. Blakeslee, and H. J. Christian, “Where Are the Lightning Hotspots on Earth?,” Bull. Am. Meteorol. Soc., vol. 97, no. 11, pp. 2051–2068, Feb. 2016, doi: 10.1175/BAMS-D-14-00193.1
dc.relationIEC 62858, Lightning density based on lightning location systems – General principles, vol. IEC 62858:2090. 2019
dc.relationV. Cooray, Ed., The Lightning Flash, 2 edition. London: The Institution of Engineering and Technology, 2014
dc.relationV. Cooray, An Introduction to Lightning. Dordrecht: Springer Netherlands, 2015. Accessed: Sep. 08, 2016. [Online]. Available: http://link.springer.com/10.1007/978- 94-017-8938-7
dc.relationV. A. Rakov and M. A. Uman, Lightning: Physics and Effects. Cambridge University Press, 2003
dc.relationV. Cooray, Lightning Protection. in IET Power and Energy Series, no. 58. London, UK: The Institution of Engineering and Technology, 2010
dc.relationM. A. Uman, The Art and Science of Lightning Protection. 2008. doi: 10.1017/CBO9780511585890
dc.relationCIGRE WG C4.407, Lightning Parameters for Engineering Applications. 2013, p. 118
dc.relationK. Berger, R. B. Anderson, and H. Kröninger, “Parameters of Lightning Flashes,” Electra, vol. 41, pp. 23–37, 1975
dc.relationDEHN + SÖHNE, “Lightning Protection Guide - 3rd updated Edition.” DEHN + SÖHNE GmbH + Co.KG., 2014. Accessed: Apr. 13, 2016. [Online]. Available: https://www.dehn-international.com/en/lightning-protection-guide
dc.relationSAE ARP5412B, Aircraft Lightning Environment and Related Test Waveforms. Accessed: Apr. 30, 2021. [Online]. Available: https://www.sae.org/standards/content/arp5412b/
dc.relationNTC 4552, Proteccion Contra Descargas Electricas Atmosfericas (Rayos), vol. NTC 4552 (1-3). 2008
dc.relationH. E. Rojas, F. Santamaría, O. F. Escobar, and F. J. Román, “Lightning research in Colombia: Lightning parameters, protection systems, risk assessment and warning systems,” Ing. Desarro., vol. 35, no. 1, pp. 240–261, Jun. 2017, doi: 10.14482/inde.35.1.8951
dc.relationH. Torres, E. Perez, C. Younes, D. Aranguren, J. Montana, and J. Herrera, “Contribution to Lightning Parameters Study Based on Some American Tropical Regions Observations,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 8, pp. 4086–4093, Aug. 2015, doi: 10.1109/JSTARS.2015.2428217
dc.relationS. Visacro and M. Guimarães, “Recent lightning measurements and results at Morro do Cachimbo Station,” presented at the 2014 ILDC/ILMC International Lightning Detection Conference / International Lightning Meterology Conference, Tucson, Arizona, 2014
dc.relationM. Gagné and D. Therriault, “Lightning strike protection of composites,” Prog. Aerosp. Sci., vol. 64, pp. 1–16, Enero 2014, doi: 10.1016/j.paerosci.2013.07.002
dc.relationF. Heidler, Z. Flisowski, W. Zischank, Ch. Bouquegneau, and C. Mazzetti, “Parameters of lightning current given in IEC 62305 - Background, experience and outlook,” in 29th International Conference on Lightning Protection (ICLP), Uppsala, Sweden, Jun. 2008
dc.relationA. Gomes, C. Gomes, M. Z. K. Ab Kadir, M. Izadi, and M. Rock, “Evaluation of lightning protection systems proposed for small structures by electromagnetic simulation,” 2016 33rd Int. Conf. Light. Prot. ICLP 2016, 2016, doi: 10.1109/ICLP.2016.7791440
dc.relationIEC 62305-1, Protection against lightning - Part 1: General principles, vol. IEC 62305-1:2010. 2010
dc.relationY. Hirano, S. Katsumata, Y. Iwahori, and A. Todoroki, “Artificial lightning testing on graphite/epoxy composite laminate,” Compos. Part Appl. Sci. Manuf., vol. 41, no. 10, pp. 1461–1470, Oct. 2010, doi: 10.1016/j.compositesa.2010.06.008
dc.relationT. Ogasawara, Y. Hirano, and A. Yoshimura, “Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current,” Compos. Part Appl. Sci. Manuf., vol. 41, no. 8, pp. 973–981, Aug. 2010, doi: 10.1016/j.compositesa.2010.04.001
dc.relationW. G. Chace and H. K. Moore, Exploding Wires: Volume 2 Proceedings of the Second Conference on the Exploding Wire Phenomenon, Held at Boston, November 13–15, 1961, under the Sponsorship of the Geophysics Research Directorate, Air Force Cambridge Research Laboratories, Office of Aerospace Research, with the Cooperation of the Lowell Technological Institute Research Foundation. Springer US, 1962. doi: 10.1007/978-1-4684-7505-0
dc.relationC. J. Andrews, Lightning Injuries: Electrical, Medical, and Legal Aspects. CRC Press, 2018
dc.relationIEC 62305-2, Protection against lightning - Part 2: Risk managment, vol. IEC 62305- 2:2010. 2010, p. 171
dc.relationJ. A. Cristancho C., J. E. Rodriguez M., C. A. Rivera G., F. Román, L. K. Herrera, and J. J. Pantoja, “Conductive Fabric Potential Rise due to Lightning Impulse Currents,” in 2019 International Symposium on Lightning Protection (XV SIPDA), Sep. 2019, pp. 1–6. doi: 10.1109/SIPDA47030.2019.8951605
dc.relationJ. A. Cristancho, C., J. E. Rodríguez, M., C. A. Rivera G., and F. Román, “Lightning Incident with Multiple Natives Injured in the Sierra Nevada de Santa Marta - Colombia : Description of Scenario,” in 2019 International Symposium on Lightning Protection (XV SIPDA), Sep. 2019, pp. 1–7. doi: 10.1109/SIPDA47030.2019.8951570
dc.relationIEC 62305-3, Protection against lightning - Part 3: Physical damage to structures and life hazard, vol. IEC 62305-3:2010. 2010, p. 313
dc.relationC. Bouquegneau, “External lightning protection system,” in Lightning protection, V. Cooray, Ed., in IET Power and Energy Series, no. 58. London, UK: The Institution of Electrical Engineers, 2010, pp. 307–354. [Online]. Available: www.theiet.org
dc.relationV. Cooray, “Basic Principles of Lightning Protection,” in An Introduction to Lightning, Springer Netherlands, 2015, pp. 301–330. doi: 10.1007/978-94-017-8938-7_17
dc.relationJ. A. Cristancho C., J. E. Rodriguez M., C. A. Rivera G., F. Roman, and J. J. Pantoja, “High Current Tests over Conductive Fabrics,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), Sep. 2018, pp. 428–432. doi: 10.1109/ICEAA.2018.8520351
dc.relationV. Rakov, “Lightning Discharge and Fundamentals of Lightning Protection,” Journal of Lightning Research, Jun. 2012, doi: 10.2174/1652803401204010003
dc.relationMinisterio de Minas y Energía, Reglamento Técnico de Instalaciones Eléctricas RETIE, vol. Anexo general. 2013. [Online]. Available: http://www.minminas.gov.co
dc.relationIEC webstore, “IEC Webstore - International Electrotechnical Commission,” IEC Online Collections. https://webstore.iec.ch/ (accessed Jun. 07, 2021)
dc.relation“IEEE SA - The IEEE Standards Association - Home.” https://standards.ieee.org/ (accessed Jun. 10, 2021)
dc.relation“ABNT Catalogo.” https://www.abntcatalogo.com.br/ (accessed Jun. 10, 2021)
dc.relation“ICONTEC e-Collection.” https://ecollection.icontec.org/ (accessed Jun. 10, 2021)
dc.relationIEC 62305-4, Protection against lightning - Part 4: Electrical and electronic systems within structures, vol. IEC 62305-4:2010. 2010, p. 92
dc.relationM. A. Cooper, C. J. Andrews, R. L. Holle, R. Blumenthal, and N. Navarrete-Aldana, “Lightning-Related Injuries and Safety,” in Auerbach’s Wilderness Medicine, P. S. Auerbach, Ed., 7th edition.Philadelphia, PA: Elsevier, 2017, pp. 71-117.e7
dc.relationJ. A. Cristancho C., C. Rivera, J. J. Pantoja, and F. Román, “Nonfatal lightning injuries in Colombia: Case reports,” in 2015 International Symposium on Lightning Protection (XIII SIPDA), Sep. 2015, pp. 157–160. doi: 10.1109/SIPDA.2015.7339328
dc.relationM. A. Cooper and R. L. Holle, Reducing Lightning Injuries Worldwide. in Springer Natural Hazards. Springer International Publishing, 2019. Accessed: Jun. 14, 2018. [Online]. Available: //www.springer.com/la/book/9783319775616
dc.relationIEC TS 60479-1, IEC TS 60479-1, vol. Effects of current on human beings and livestock-Part 1: General aspects. 2018, p. 72
dc.relationIEEE Std 80-2013, IEEE Guide for Safety in AC Substation Grounding. 2015, pp. 1– 226
dc.relationIEC/TR 62713, Safety procedures for reduction of risk outside a structure, vol. IEC/TR 62713:2013. 2013
dc.relationR. H. Golde and W. R. Lee, “Death by lightning,” Proc. Inst. Electr. Eng., vol. 123, no. 10, pp. 1163–1180, Oct. 1976, doi: 10.1049/piee.1976.0210
dc.relationN. Kitagawa, K. Kinoshita, and T. Ishikawa, “Discharge experiments using dummies and rabbits simulating lightning strokes on human bodies,” Int. J. Biometeorol., vol. 17, no. 3, pp. 239–241, Sep. 1973, doi: 10.1007/BF01804616
dc.relationP. Hasgall et al., “IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.0.” IT’IS Foundation, May 15, 2018. doi: 10.13099/VIP21000-04-0. itis.swiss/database
dc.relationOxford University Press, “Oxford Learner’s Dictionaries,” Oxford Learner’s Dictionaries. https://www.oxfordlearnersdictionaries.com/ (accessed Feb. 26, 2021)
dc.relationEuropean Food Safety Authority, “Hazard vs. Risk,” Hazard vs. Risk. https://www.efsa.europa.eu/es/discover/infographics/hazard-vs-risk (accessed Jun. 19, 2021)
dc.relationIEEE Std 100-2000, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition. 2000, pp. 1–1362
dc.relationC. C. for O. H. and S. Government of Canada, “Hazard and Risk : OSH Answers,” Feb. 26, 2021. https://www.ccohs.ca/ (accessed Feb. 26, 2021)
dc.relationJ. A. Cristancho C., J. E. Rodriguez M., and F. Román, “Revisiting a lightningcaused trauma case in a pregnancy women,” presented at the Work in progress, unpublished 2021
dc.relationC. W. Althaus, “Injury from lightning strike while using mobile phone,” BMJ, vol. 333, no. 7558, p. 96, Jul. 2006
dc.relationT. Mallinson, “Understanding the correct assessment and management of lightning injuries,” J. Paramed. Pract., vol. 5, pp. 196–201, Apr. 2013, doi: 10.12968/jpar.2013.5.4.196
dc.relationJ. D. Jensen, J. Thurman, and A. L. Vincent, “Lightning Injuries,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2021. Accessed: Mar. 27, 2021. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK441920/
dc.relationP. S. Auerbach, T. A. Cushing, and N. S. Harris, Auerbach’s wilderness medicine. 2017
dc.relationG. Berger, “Lightning-caused accidents and injuries to humans,” in Proc. of International symposium on lightning protection (IX SIPDA), Foz de Iguaçu, Brazil, Nov. 2007
dc.relationM. M. Frydenlund, Lightning Protection for People and Property, 1st ed. Boston, MA: Springer, 1993. doi: 10.1007/978-1-4684-6548-8_1
dc.relationC. Gomes, “Lightning Related Human Risks and Risk Management,” Am. J. Manag. Sci. Eng., vol. 2, pp. 65–79, Jan. 2017
dc.relationM. A. Cooper, R. L. Holle, and C. J. Andrews, “Distribution of lightning injury mechanisms,” in 2010 30th International Conference on Lightning Protection (ICLP), Sep. 2010, pp. 1–4. doi: 10.1109/ICLP.2010.7845948
dc.relationN. Kitagawa, S. Turumi, T. Ishikawa, and M. Ohashi, “The nature of lightning discharges on human bodies and the basis for safety and protection,” Conf. Proc. 18th ICLP 1985, vol. Session 6, 1985
dc.relationK. Berger, “Sugestions for the Protection of Persons and Groups of Persons against Lightning Hazards, with an appendix on generation and characteristics of lightning,” Jt. Comm. Athmospheric Electr. IAGA IAMAP Union Géod. Géophysique Int., p. 18, Jun. 1971
dc.relationK. Zafren, B. Durrer, J.-P. Herry, H. Brugger, and ICAR and UIAA MEDCOM, “Lightning injuries: prevention and on-site treatment in mountains and remote areas. Official guidelines of the International Commission for Mountain Emergency Medicine and the Medical Commission of the International Mountaineering and Climbing Federation (ICAR and UIAA MEDCOM),” Resuscitation, vol. 65, no. 3, pp. 369–372, Jun. 2005, doi: 10.1016/j.resuscitation.2004.12.014
dc.relationJ. Gookin, “Backcountry lightning risk management,” presented at the 21st International Lightning Detection and 2nd International Lightning Meteorology Conference, Orlando, FL - USA, 2010. [Online]. Available: http://rendezvous.nols.edu//content/view/1718/739/
dc.relationVDE ABB, “Blitzgefahren, Blitzschutz, Überspannungsschutz - Grafiken zum Download - VDE Blitzschutz.” https://www.vor-blitzen-schuetzen.eu/de/downloadgrafiken (accessed Jul. 20, 2021)
dc.relationJ. Cristancho C., H. Suárez, Y. Urbano, and F. Román, “Fatal livestock lightning accident in Colombia,” in 2017 International Symposium on Lightning Protection (XIV SIPDA), Oct. 2017, pp. 295–298. doi: 10.1109/SIPDA.2017.8116939
dc.relationN. Kitagawa, “The actual mechanisms of so-called step voltage injuries,” Conf. Proc. 25th ICLP 2000, vol. Session 8, Sep. 2000
dc.relationITU-R P.229, Electrical characteristics of the surface of the earth, vol. ITU-R P.229- 6:1990. 1990, pp. 60–66
dc.relationJ. D. McNeill, “Electrical conductivity of soils and rocks,” Geonics Limited, Ontario, Canada, Oct. 1980
dc.relationJ. A. Cristancho C., J. J. Pantoja, C. A. Rivera, and F. Roman, “Analysis of two nonfatal lightning accidents in Colombia,” Electr. Power Syst. Res., vol. 153, pp. 159–169, Dec. 2017, doi: 10.1016/j.epsr.2016.12.021
dc.relationD. S. Gazzana, A. S. Bretas, G. A. D. Dias, M. Telló, D. W. P. Thomas, and C. Christopoulos, “A study of human safety against lightning considering the grounding system and the evaluation of the associated parameters,” Electr. Power Syst. Res., vol. 113, pp. 88–94, Agosto 2014, doi: 10.1016/j.epsr.2014.03.015
dc.relationÓ. Díaz, F. Santamaría, A. Alarcón, and F. Román, “Comportamiento De La Impedancia De Aterrizamiento De Una Víctima Humana Impactada Por Un Rayo,” Tecnura, 2008. Accessed: Apr. 05, 2016. [Online]. Available: http://www.redalyc.org/articulo.oa?id=257020605005
dc.relationJ. Wang, A. C. Liew, and M. Darveniza, “Extension of dynamic model of impulse behavior of concentrated grounds at high currents,” in IEEE Power Engineering Society General Meeting, 2004., Jun. 2004, p. 420 Vol.1-. doi: 10.1109/PES.2004.1372829
dc.relationS. J. Spano, D. Campagne, G. Stroh, and M. Shalit, “A Lightning Multiple Casualty Incident in Sequoia and Kings Canyon National Parks,” Wilderness Environ. Med., vol. 26, no. 1, pp. 43–53, Mar. 2015, doi: 10.1016/j.wem.2014.06.010
dc.relationA. E. Carte, R. B. Anderson, and M. A. Cooper, “A large group of children struck by lightning,” Ann. Emerg. Med., vol. 39, no. 6, pp. 665–670, Jun. 2002
dc.relationK. L. Cummins, E. P. Krider, M. Olbinski, and R. L. Holle, “A case study of lightning attachment to flat ground showing multiple unconnected upward leaders,” Atmospheric Res., vol. 202, pp. 169–174, 2018, doi: 10.1016/j.atmosres.2017.11.007
dc.relationJ. Aleccia, “Decades later, hair-raising photo still a reminder of lightning danger,” NBC Health News, Jul. 13, 2013. http://www.nbcnews.com/healthmain/decadeslater-hair-raising-photo-still-reminder-lightning-danger-6C10791362 (accessed Jul. 23, 2022)
dc.relationM. A. Cooper, “A fifth mechanism of lightning injury,” Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med., vol. 9, no. 2, pp. 172–174, Feb. 2002
dc.relationDaily Mail Reporter, “How to know if you’re about to be hit by lightning: The story behind a shocking picture of brothers with their hair standing on end used in many safety campaigns,” Mail Online, Jul. 31, 2013. https://www.dailymail.co.uk/news/article-2381677/How-know-youre-struck-lightningPicture-brothers-hair-end-minutes-before.html (accessed Jul. 23, 2022)
dc.relationR. L. Holle, “The Number of Documented Global Lightning Fatalities,” 24th Int. Light. Detect. Conf. 6th Int. Light. Meteorol. Conf., 2016
dc.relationO. J. F. van Waes, P. C. van de Woestijne, and J. A. Halm, “‘Thunderstruck’: Penetrating Thoracic Injury From Lightning Strike,” Ann. Emerg. Med., vol. 63, no. 4, pp. 457–459, Abril 2014, doi: 10.1016/j.annemergmed.2013.08.021
dc.relationJ. R. Dwyer and M. A. Uman, “The physics of lightning,” Phys. Rep., vol. 534, no. 4, pp. 147–241, 2014, doi: 10.1016/j.physrep.2013.09.004
dc.relationM. Ahrens, “Lightning fires and lightning strikes,” National Fire Protection Association - NFPA, Quincy, MA, Analysis NFPA No. USS51, Jun. 2013
dc.relationE. and C. C. Canada, “Lightning and forest fires,” Jul. 29, 2010. https://www.canada.ca/en/environment-climate-change/services/lightning/forestfires.html (accessed Aug. 14, 2021)
dc.relationJ. Schwartz and V. Penney, “In the West, Lightning Grows as a Cause of Damaging Fires,” The New York Times, Oct. 23, 2020. Accessed: Aug. 14, 2021. [Online]. Available: https://www.nytimes.com/interactive/2020/10/23/climate/west-lightningwildfires.html
dc.relationN. G. Gortázar, “Reportagem | O que há por trás das chamas na Amazônia,” EL PAÍS, Nov. 04, 2019. https://brasil.elpais.com/brasil/2019/10/22/eps/1571696000_250069.html (accessed Aug. 14, 2021)
dc.relationD. E. Villamil, N. Navarrete, and M. A. Cooper, “Keraunoparalysis and burning thatch: A proposed explanation for severe lightning injuries reported in developing countries,” Electr. Power Syst. Res., vol. 197, p. 107301, Aug. 2021, doi: 10.1016/j.epsr.2021.107301
dc.relationWorld Health Organization, The injury chart book : a graphical overview of the global burden of injuries. World Health Organization - WHO, 2002. Accessed: Jun. 19, 2021. [Online]. Available: https://apps.who.int/iris/handle/10665/42566
dc.relationA. E. Ritenour, M. J. Morton, J. G. McManus, D. J. Barillo, and L. C. Cancio, “Lightning injury: A review,” Burns, vol. 34, no. 5, pp. 585–594, Aug. 2008, doi: 10.1016/j.burns.2007.11.006
dc.relationF. Huss, U. Erlandsson, V. Cooray, G. Kratz, and F. Sjöberg, “Blixtolyckor - mix av elektriskt, termiskt och multipelt trauma,” Läkartidningen, vol. 101, pp. 2328–2331, 2004
dc.relationIEC/TR 60479-4, Effects of current on human beings and livestock – Part 4: Effects of lightning strokes, vol. IEC/TR 60479-4:2020. 2020
dc.relationDIPSE-EJC, “Data from ‘Dirección de preservación de la integridad y seguridad del ejército - DIPSE, Comando de Personal - COPER, Ejército de Colombia - EJC’ about Lightning Accidents in Colombian Army 2003-2013,” Feb. 2017
dc.relationC. Andrews, “Electrical aspects of lightning strike to humans,” in The lightning flash, V. Cooray, Ed., in IET Power and Energy Series, no. 69. London, UK: The Institution of Electrical Engineers, 2014, pp. 701–723. doi: 10.1007/978-94-017-8938-7_17
dc.relationG. A. D. Dias, M. Telló, D. S. Gazzana, and G. C. Potier, “Revisiting lightning body model,” in 2009 International Symposium on Lightning Protection (X SIPDA), Curitiba, Nov. 2009, pp. 695–698
dc.relationC. Andrews, “Electrical aspects of lightning strike to humans,” in The lightning flash, V. Cooray, Ed., in IET Power and Energy Series, no. 34. London, UK: The Institution of Electrical Engineers, 2003, pp. 549–574. doi: 10.1007/978-94-017-8938-7_17
dc.relationF. Román, A. Alarcón, and F. Santamaría, “Analysis of a lightning accident in Gavle, Sweden,” in 2005 International Symposium on Lightning Protection (VIII SIPDA), Sao Paulo, Oct. 2005, pp. 324–328
dc.relationN. R. Misbah, M. Z. A. A. Kadir, and C. Gomes, “Modelling and analysis of different aspect of mechanisms in lightning injury,” in 2011 4th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), Apr. 2011, pp. 1–5. doi: 10.1109/ICMSAO.2011.5775551
dc.relationV. Amoruso and F. Lattarulo, “Diakoptics for electrostatics,” IEE Proc. - Sci. Meas. Technol., vol. 141, no. 5, pp. 317–323, Sep. 1994, doi: 10.1049/ip-smt:19941070
dc.relationF. B. Sachse, C. D. Werner, K. Meyer-Waarden, and O. Dössel, “Development of a human body model for numerical calculation of electrical fields,” Comput. Med. Imaging Graph., vol. 24, no. 3, pp. 165–171, May 2000, doi: 10.1016/S0895- 6111(00)00016-1
dc.relationL. B. Gordon, B. K. Appelt, and J. W. Mitchell, “The complex dielectric nature of the human body,” in 1998 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No.98CH36257), Oct. 1998, pp. 577–580 vol. 2. doi: 10.1109/CEIDP.1998.732963
dc.relationC. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey,” Phys. Med. Biol., vol. 41, no. 11, p. 2231, 1996, doi: 10.1088/0031-9155/41/11/001
dc.relationS. Suchanek, V. Hinrichsen, J. Gao, I. Munteanu, R. Brocke, and K.-P. Müller, “Effects of step voltages on the human body; in German (Auswirkungen von Schrittspannungen auf den Menschen),” in VDE Fachberichte, in 9. VDE/ABBBlitzschutztagung : Vorträge der 9. VDE/ABB-Fachtagung. Neu-Ulm, Berlin: VDEVerl., 2011, pp. 33–37
dc.relationW. A. Chisholm and D.-H. Nguyen, “Coordinating the Einthoven Body Impedance Model for ECG Signals with IEC 60479-1:2018 Electrocution Heart Current Factors: Invited Lecture - Extended Summary,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Sep. 2021, pp. 01–03. doi: 10.1109/ICLPandSIPDA54065.2021.9627369
dc.relationA. Lemosquet, L. de Carlan, and I. Clairand, “Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry,” Radioprotection, vol. 38, no. 4, Art. no. 4, Oct. 2003, doi: 10.1051/radiopro:2003020
dc.relationM. Caon, “Voxel-based computational models of real human anatomy: a review,” Radiat. Environ. Biophys., vol. 42, no. 4, pp. 229–235, Feb. 2004, doi: 10.1007/s00411-003-0221-8
dc.relationK. Yamazaki, “Assessment methods for electric and magnetic fields in low and intermediate frequencies related to human exposures and the status of their standardization,” Electron. Commun. Jpn., vol. 103, no. 1–4, pp. 10–18, 2020, doi: 10.1002/ecj.12233
dc.relationInternational Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz),” Health Phys., vol. 99, no. 6, pp. 818–836, Dec. 2010, doi: 10.1097/HP.0b013e3181f06c86
dc.relationThe National Library of Medicine, “The Visible Human Project.,” Visible Human Project. https://www.nlm.nih.gov/research/visible/visible_human.html (accessed Apr. 08, 2021
dc.relationJ. Gao, “Generation of Postured Voxel-based Human Models Used for Electromagnetic Applications,” Ph.D. Thesis, Technische Universität, Darmstadt, 2012. Accessed: Dec. 14, 2016. [Online]. Available: http://tuprints.ulb.tudarmstadt.de/2866/
dc.relationS. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., vol. 41, no. 11, p. 2251, 1996, doi: 10.1088/0031-9155/41/11/002
dc.relationS. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues,” Phys. Med. Biol., vol. 41, no. 11, p. 2271, 1996, doi: 10.1088/0031-9155/41/11/003
dc.relationM. Nikolovski, “Detailed Modeling of the Human Body in Motion to Investigate the Electromagnetic Influence of Fields in a Realistic Environment,” Ph.D. Thesis, Technische Universität, Darmstadt, 2017. Accessed: Dec. 14, 2020. [Online]. Available: https://d-nb.info/1153123460/34
dc.relationDassault Systèmes, “CST Studio Suite 3D EM simulation and analysis software,” 2021. https://www.3ds.com/products-services/simulia/products/cst-studio-suite/ (accessed Nov. 05, 2021)
dc.relationIT’IS Foundation, “Tissue Properties Database V4.0.” IT’IS Foundation, 2018. doi: 10.13099/VIP21000-04-0
dc.relationIT’IS Foundation, “Virtual Population & ViZoo,” Virtual Population & ViZoo. https://itis.swiss/virtual-population/virtual-population/overview/ (accessed Jan. 05, 2022)
dc.relationJ. W. Massey, “Creating AustinMan: An Electromagnetic Voxel Model of the Visible Human,” Undergraduate Thesis, University of Texas at Austin, Darmstadt, 2011. Accessed: Dec. 14, 2016. [Online]. Available: https://sites.utexas.edu/austinmanaustinwomanmodels/files/2018/05/CreatingAustin Man.pdf
dc.relationI. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, “Computerized three-dimensional segmented human anatomy,” Med. Phys., vol. 21, no. 2, pp. 299–302, Feb. 1994, doi: 10.1118/1.597290
dc.relationM. R. Golsefidi, Z. Bakhtiary, E. Sharifi, M. Saviz, and R. Faraji-dana, “Development of a free anthropomorphic voxel model of human body for wide-band computational electromagnetics dosimetry,” 2020. doi: 10.22060/EEJ.2020.18179.5346
dc.relationA. Cruz Bernal, “Evaluación del riesgo por rayos para Colombia,” Tesis de Maestría, Universidad Nacional de Colombia - Sede Bogotá, Bogotá D.C., 2019. Accessed: Sep. 11, 2020. [Online]. Available: https://www.researchgate.net/publication/341714057_Evaluacion_del_riesgo_por_ra yos_para_Colombia
dc.relationJ. A. Latorre, J. E. Rodriguez, C. A. Martínez, J. A. Cristancho C., and F. Román, “Characterization of a Metallic Pearl-like Necklace stroked by lightning: preliminary results,” in 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, Sep. 2016. doi: 10.1109/ICLP.2016.7791466
dc.relationQ. C. A. Martínez, F. Román, and J. A. Cristancho, “Determination of the lightning current from its thermal effects,” in 2016 33rd International Conference on Lightning Protection (ICLP), Estoril, Portugal, Sep. 2016, pp. 1–5. doi: 10.1109/ICLP.2016.7791464
dc.relationF. Hanaffi, W. H. Siew, and I. Timoshkin, “Step voltages in a ground-grid arising from lightning current,” in 2015 Asia-Pacific International Conference on Lightning, Aichi, Jun. 2015. Accessed: May 18, 2019. [Online]. Available: https://strathprints.strath.ac.uk/52648/
dc.relationC. Gomes, M. Z. A. A. Kadir, and M. A. Cooper, “Lightning safety scheme for sheltering structures in low-income societies and problematic environments,” in 2012 International Conference on Lightning Protection (ICLP), Sep. 2012, pp. 1–11. doi: 10.1109/ICLP.2012.6344404
dc.relationK. Galster, R. Hodnick, and R. P. Berkeley, “Lightning Strike in Pregnancy With Fetal Injury,” Wilderness Environ. Med., vol. 27, no. 2, pp. 287–290, Jun. 2016, doi: 10.1016/j.wem.2016.02.006
dc.relationJ. R. Maxwell, C. Kamm, C. D. Grassham, J. Fuller, J. R. Lowe, and V. Ianus, “When lightning strikes: a case of early childhood outcome following maternal lightning strike,” Acta Paediatr., vol. 108, no. 3, pp. 557–558, Mar. 2019, doi: 10.1111/apa.14554
dc.relationK. Berger, “Blitzforschung und Personen-Blitzschutz,” ETZ-A, vol. 92, pp. 508–511, Jun. 1971
dc.relationG. Serre, “Lightning protection for individuals, integrated into clothing, tents and sleeping bags, comprises braided metal threads incorporated into fabric to form Faraday cage (Integrierte Blitzschutzvorrichtung für Kleidung, Zelte und Schlafsäcke),” Germany, DE102006057439A1, Jun. 19, 2008 [Online]. Available: https://patents.google.com/patent/DE102006057439A1/en?oq=DE102006057439A1
dc.relationH. Prinz, J. Wiesinger, and R. Koenig, “Emergency shelter in the form of a tent or the like (Notunterkunft, insbesondere Zelt),” United States, US3547136A, Dec. 15, 1970 [Online]. Available: https://patents.google.com/patent/US3547136A/en?oq=US3547136A
dc.relationK. Sobolewski and K. Jania, “The concept of using the tent structure as a measure of protection against lightning,” in Proceeding 2015 16th International Conference on Computational Problems of Electrical Engineering (CPEE), Sep. 2015, pp. 192–195. doi: 10.1109/CPEE.2015.7333373
dc.relationK. Sobolewski, A. Łasica, and P. Sul, “Lightning safety of tourists infrastructures,” in Proceedings 2016 17th International Conference on Computational Problems of Electrical Engineering, CPEE 2016, Sep. 2016
dc.relationAbout the NWS and The National Weather Service (NWS), “Lightning Safety Tips and Resources,” Lightning Safety Tips and Resources. https://www.weather.gov/safety/lightning (accessed Mar. 03, 2021)
dc.relationR. A. Chapman, Ed., Smart textiles for protection. in Woodhead Publishing Series in Textiles, no. 133. UK: Woodhead Publishing, 2013. doi: 10.1533/9780857097620.frontmatter
dc.relationS. Chapman, D. Hewett, and L. Trefethen, “Mathematics of the Faraday Cage,” SIAM Rev., vol. 57, pp. 398–417, Jan. 2015, doi: 10.1137/140984452
dc.relationR. Fitzpatrick, Maxwell’s Equations and the Principles of Electromagnetism. Hingham, MA: Jones & Bartlett Publishers, 2008
dc.relationV. A. Rakov, “Electromagnetic Methods of Lightning Detection,” Surv. Geophys., vol. 34, no. 6, pp. 731–753, Nov. 2013, doi: 10.1007/s10712-013-9251-1
dc.relationM. Azadifar et al., “Analysis of lightning-ionosphere interaction using simultaneous records of source current and 380 km distant electric field,” J. Atmospheric Sol.-Terr. Phys., vol. 159, pp. 48–56, Jun. 2017, doi: 10.1016/j.jastp.2017.05.010
dc.relationIEEE Std 1410-2010, IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines. 2011, p. 73
dc.relationE. H. Williams, “Magnetic Properties of Copper-Nickel Alloys,” Phys. Rev., vol. 38, no. 4, pp. 828–831, Aug. 1931, doi: 10.1103/PhysRev.38.828
dc.relationJ. R. Davis, ASM Specialty Handbook: Copper and Copper Alloys. Materials Park, OH: ASM International, 2001
dc.relationR. Kithil and V. Rakov, “Small Shelters and Safety from Lightning,” in Proceedings of the 2001 Aerospace Congress on CD-ROM, in SAE TECHNICAL PAPER SERIES, vol. 2001- 01–2896. Seattle, Washington: SAE Internbational, Sep. 2001. doi: 10.4271/2001-01-2896
dc.relationC. Tovar, D. Aranguren, J. López, J. Inampués, and H. Torres, “Lightning risk assessment and thunderstorm warning systems,” in 2014 International Conference on Lightning Protection (ICLP), Oct. 2014, pp. 1870–1874. doi: 10.1109/ICLP.2014.6973434
dc.relationP. Fernandes Costa, “Prevenção em ambientes abertos: os sistemas de alerta de trovoadas.” https://www.arandanet.com.br/revista/em/materia/2016/11/01/prevencao_em_ambie ntes.html (accessed Aug. 11, 2022)
dc.relationM. Becerra and V. Cooray, “On the Interaction of Lightning Upward Connecting Positive Leaders With Humans,” IEEE Trans. Electromagn. Compat., vol. 51, no. 4, pp. 1001–1008, Nov. 2009, doi: 10.1109/TEMC.2009.2033265
dc.relationC. Davis et al., “Wilderness Medical Society Practice Guidelines for the Prevention and Treatment of Lightning Injuries: 2014 Update,” Wilderness Environ. Med., vol. 25, no. 4, Supplement, pp. S86–S95, Dec. 2014, doi: 10.1016/j.wem.2014.08.011
dc.relationJ. Gookin, “Lightning safety for cavers,” National Speleological Society News, vol. Part 2, no. June 2003, pp. 8–10, Jun. 2003
dc.relationAS/NZS 1768:2007, Lightning protection, vol. Australian/New Zealand Standard AS/NZS 1768:2007. 2007
dc.relationR. H. Golde, “A plain man’s guide to lightning protection,” Electron. Power, vol. 15, no. 3, pp. 84–86, Mar. 1969, doi: 10.1049/ep.1969.0085
dc.relationJ. A. Cristancho, C. A. Rivera, J. E. Rodriguez, J. J. Pantoja, L. K. Herrera, and F. Roman, “Lightning Impulse Current Tests on Conductive Fabrics,” ArXiv191105162 Phys., Nov. 2019, Accessed: Dec. 09, 2019. [Online]. Available: http://arxiv.org/abs/1911.05162
dc.relationJ. A. Cristancho, C. A. Rivera G., J. E. Rodriguez M., J. J. Pantoja A., L. K. Herrera Q., and F. Roman, “Lightning Impulse Current Tests on Conductive Fabrics,” Hal-02356763, Nov. 2019, Accessed: Feb. 19, 2020. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02356763
dc.relation“Medical Textile Construction - Knit, Woven, Non-Woven & Braided Surgical Fabric,” ATEX Technologies. https://www.atextechnologies.com/textile-constructionoverview/ (accessed Sep. 13, 2022)
dc.relationJ. A. Cristancho, C. A. Rivera, J. E. Rodriguez, J. J. Pantoja, L. K. Herrera, and F. Roman, “Lightning Impulse Current Tests on some Electroconductive Fabrics,” J. Appl. Res. Technol., vol. 21, no. 2, pp. 241–255, Apr. 2023, doi: 10.22201/icat.24486736e.2023.21.2.1605
dc.relationN. Navarrete-Aldana, M. A. Cooper, and R. L. Holle, “Lightning fatalities in Colombia from 2000 to 2009,” Nat. Hazards, vol. 74, no. 3, pp. 1349–1362, May 2014, doi: 10.1007/s11069-014-1254-9
dc.relationOSHA-NOAA, “Lightning Safety When Working Outdoors,” FactSheet, vol. FS-3863, p. 5, May 2016
dc.relationK. M. Walsh, B. Bennett, M. A. Cooper, R. L. Holle, R. Kithil, and R. E. López, “National Athletic Trainers’ Association Position Statement: Lightning Safety for Athletics and Recreation,” J. Athl. Train., vol. 35, no. 4, pp. 471–477, 2000
dc.relationNational Fire Protection Association, NFPA 780 - Standard for the installation of Lightning Protection Systems - 2017, NFPA. 2017
dc.relationA. M. Grancarić et al., “Conductive polymers for smart textile applications,” J. Ind. Text., vol. 48, no. 3, pp. 612–642, Sep. 2018, doi: 10.1177/1528083717699368
dc.relationM. Miao and J. H. Xin, Engineering of High-Performance Textiles. Woodhead Publishing, 2017
dc.relationW. C. Smith, Smart Textile Coatings and Laminates. Woodhead Publishing, 2010
dc.relationJ. Baltušnikaitė, S. Varnaitė-Žuravliova, V. Rubežienė, R. Rimkutė, and R. Verbienė, “Influence of Silver Coated Yarn Distribution on Electrical and Shielding Properties of Flax Woven Fabrics —,” Fibres Text. East. Eur., vol. 22, no. 2(104), pp. 84–90, 2014
dc.relationJ. Wang, P. Xue, X. Tao, and T. Yu, “Strain Sensing Behavior and Its Mechanisms of Electrically Conductive PPy-Coated Fabric,” Adv. Eng. Mater., vol. 16, no. 5, pp. 565–570, 2014, doi: 10.1002/adem.201300407
dc.relationJ. Banaszczyk, A. Anca, and G. D. Mey, “Infrared thermography of electroconductive woven textiles,” Quant. InfraRed Thermogr. J., vol. 6, no. 2, pp. 163–173, Dec. 2009, doi: 10.3166/qirt.6.163-173
dc.relationY. Zhao, J. Tong, C. Yang, Y. Chan, and L. Li, “A simulation model of electrical resistance applied in designing conductive woven fabrics,” Text. Res. J., vol. 86, no. 16, pp. 1688–1700, Oct. 2016, doi: 10.1177/0040517515590408
dc.relationS. Varnaitė-Žuravliova, J. Baltušnikaitė-Guzaitienė, L. Valasevičiūtė, R. Verbienė, and A. Abraitienė, “Assessment of Electrical Characteristics of Conductive Woven Fabrics,” Am. J. Mech. Ind. Eng., vol. 1, no. 3, p. 38, Oct. 2016, doi: 10.11648/j.ajmie.20160103.12
dc.relationJ. Banaszczyk, A. Schwarz, G. De Mey, and L. Van Langenhove, “The Van der Pauw method for sheet resistance measurements of polypyrrole-coated paraaramide woven fabrics,” J. Appl. Polym. Sci., vol. 117, no. 5, pp. 2553–2558, 2010, doi: 10.1002/app.32186
dc.relationASTM D4496−13, Test Method for D-C Resistance or Conductance of Moderately Conductive Materials. 2013. doi: 10.1520/D4496-13
dc.relationASTM F390-11, Test Method for Sheet Resistance of Thin Metallic Films With a Collinear Four-Probe Array. 2011, p. 5. doi: 10.1520/F0390-11
dc.relationE. Kuffel, W. S. Zaengl, and J. Kuffel, High Voltage Engineering Fundamentals. Oxford: Newnes, 2000. Accessed: Apr. 06, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/B9780750636346500125
dc.relationV. A. Rakov et al., “CIGRE technical brochure on lightning parameters for engineering applications,” in 2013 International Symposium on Lightning Protection (XII SIPDA), Oct. 2013, pp. 373–377. doi: 10.1109/SIPDA.2013.6729246
dc.relationA. Peschot, N. Bonifaci, O. Lesaint, C. Valadares, and C. Poulain, “Deviations from the Paschen’s law at short gap distances from 100 nm to 10 μm in air and nitrogen,” Appl. Phys. Lett., vol. 105, no. 12, p. 123109, Sep. 2014, doi: 10.1063/1.4895630
dc.relationM. A. Cooper, C. J. Andrews, R. L. Holle, R. Blumenthal, and N. Navarrete-Aldana, “Lightning related-injures and safety,” in Auerbach’s Wilderness Medicine, P. S. Auerbach, Ed., 7th edition.Philadelphia, PA: Elsevier, 2016, pp. 71–117
dc.relationJ. A. Cristancho C., J. J. Pantoja, C. Rivera, and F. Roman, “Analysis of two nonfatal lightning accidents in Colombia,” Electr. Power Syst. Res., vol. 153, pp. 159–169, Dec. 2016, doi: 10.1016/j.epsr.2016.12.021
dc.relationT. Dias, Ed., Electronic Textiles: Smart Fabrics and Wearable Technology, 1 edition. Woodhead Publishing, 2015
dc.relationC. Cruz, E. Rentería, and F. Román, “Statistics of the Colombian National Army lightning accidents,” in 2013 International Symposium on Lightning Protection (XII SIPDA), Oct. 2013, pp. 324–328. doi: 10.1109/SIPDA.2013.6729181
dc.relationF. Roman et al., “Protección personal contra rayos empleando textiles conductores,” presented at the ALTAE 2021 - Congreso Iberoamericano en Alta Tensión y Aislamiento Eléctrico, San José de Costa Rica, Costa Rica: CECACIER, Sep. 2021, p. 11
dc.relationISO 5912:2020, Camping tents — Requirements and test methods, vol. ISO 5912:2020(en). 2020. Accessed: Feb. 26, 2022. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:5912:ed-5:v1:en
dc.relationJ. He, R. Zeng, and B. Zhang, Methodology and technology for power system grounding. Singapore: John Wiley & Sons Singapore Pte. Ltd., 2013. Accessed: Oct. 11, 2016. [Online]. Available: http://doi.wiley.com/10.1002/9781118255001
dc.relationJ. J. Pantoja et al., “Model for the Estimation of Partial Burst of Ripstop ElectroConductive Fabrics,” in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, Aug. 2020, pp. 1–4. doi: 10.23919/URSIGASS49373.2020.9232413
dc.relationJ. A. Cristancho et al., “Behavior of an Electroconductive Rip-stop Fabric under 8/20 µs Lightning Current: Preliminary Results,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Sep. 2021, pp. 01–04. doi: 10.1109/ICLPandSIPDA54065.2021.9627333
dc.relationF. Román et al., “10/350 µs Lightning Impulse Current Behavior of a Conductive Fabric,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Sep. 2021, pp. 01– 06. doi: 10.1109/ICLPandSIPDA54065.2021.9627391
dc.relationJ. J. Pantoja, C. Rivera, J. Cristancho, J. Rodriguez, and F. Román, “Thermal Simulation of a Conductive Fabric Sheet Subjected to a Lightning-like Current,” in 2020 International Applied Computational Electromagnetics Society Symposium (ACES), Jul. 2020, pp. 1–2. doi: 10.23919/ACES49320.2020.9196041
dc.relationJ. J. Pantoja Acosta et al., “Specific Action as a Metric to Determine Thermal Degradation of Conductive Fabrics Exposed to High Current Impulses,” Prog. Electromagn. Res., vol. 105, pp. 59–72, 2020, doi: 10.2528/PIERC20052301
dc.relationJ. A. Cristancho, J. E. Rodriguez, and F. Román, “Revisiting a case of lightningcaused trauma in a pregnant woman,” in 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Sep. 2021, pp. 1–6. doi: 10.1109/ICLPandSIPDA54065.2021.9627467
dc.relationI. W. McAllister, “Surface current density K: an introduction,” IEEE Trans. Electr. Insul., vol. 26, no. 3, pp. 416–417, Jun. 1991, doi: 10.1109/14.85112
dc.relationJ. Banaszczyk, G. De Mey, A. Schwarz, and L. Van Langenhove, “Current Distribution Modelling in Electroconductive Textiles,” in 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems, Jun. 2007, pp. 418–423. doi: 10.1109/MIXDES.2007.4286196
dc.relationG. Nordberg, “Metals: Chemical Properties and Toxicity, on Encyclopaedia of Occupational Health and Safety (Part IX, Chapter 63),” Chemicals - 63. Metals: Chemical Properties and Toxicity, Feb. 20, 2012. https://www.iloencyclopaedia.org/part-ix-21851/metals-chemical-properties-andtoxicity (accessed Nov. 28, 2022)
dc.relationNickel Institute, “Nickel and nickel allergic contact dermatitis NACD,” Nickel and Nickel Allergic Contact Dermatitis policy. https://nickelinstitute.org/ (accessed Nov. 28, 2022)
dc.relationU. S. E. P. A. EPA, “Nickel Compounds.” EPA - United States Environmental Protection Agency, 2000. [Online]. Available: https://www.epa.gov/sites/default/files/2016-09/documents/nickle-compounds.pdf
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAnalysis and development of a personal portable lightning protection system
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución