dc.contributor | Vargas Ramírez, Mario | |
dc.contributor | Biodiversidad y Conservación Genética | |
dc.contributor | Nicolás Castillo-Rodríguez [0000000346711687] | |
dc.creator | Castillo Rodríguez, Nicolás | |
dc.date.accessioned | 2023-07-27T19:19:08Z | |
dc.date.accessioned | 2023-08-25T12:59:34Z | |
dc.date.available | 2023-07-27T19:19:08Z | |
dc.date.available | 2023-08-25T12:59:34Z | |
dc.date.created | 2023-07-27T19:19:08Z | |
dc.date.issued | 2023 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/84327 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | https://repositorioslatinoamericanos.uchile.cl/handle/2250/8426916 | |
dc.description.abstract | El Caimán Llanero o Cocodrilo del Orinoco (Crocodylus intermedius) se encuentra críticamente amenazado debido a la caza indiscriminada que sufrió durante el siglo pasado con el fin de satisfacer la empresa curtiembre estadounidense y europea. Por lo que hoy, la especie es representada por individuos aislados, pocas agrupaciones remanentes, y en gran medida, poblaciones ex situ establecidas con fines de conservación en Colombia y Venezuela. Se han desarrollado legislaciones y planes de conservación estatales, que, en el caso de Colombia, incluyen la importancia y urgente necesidad de evaluar su estado genético en vida silvestre, buscando conservar su potencial evolutivo. La presente investigación se desarrolló con el fin de empezar a llenar este vacío de información y proponer acciones concretas y efectivas para la conservación de la especie. En el primer capítulo, reevaluamos el planteamiento efectuado a partir de fragmentos de ADN mitocondrial que sugería el manejo de la especie como una única unidad genética. Para ello, usamos marcadores moleculares variables (microsatélites y la región control de la mitocondria). Como resultado, identificamos tres agrupaciones genéticas con correspondencia geográfica en la Orinoquía Colombiana: i) Cuenca Oriental del Río Meta, ii) Cuenca Occidental del Río Meta y Cuenca del Río Vichada, y iii) Cuenca del Río Guaviare. Estimamos aspectos sobre su flujo genético y planteamos hipótesis que puedan explicar esta estructuración. Así mismo, evaluamos la asignación de individuos decomisados y cuyo origen era desconocido. En el segundo capítulo, efectuamos la caracterización genética de la población que habita el sistema de ríos Cravo Norte-Ele-Lipa y del programa de rancheo de huevos que allí se desarrolla, con el objetivo de aportar herramientas para seguir con su conservación y manejo. Identificamos a la población como un valioso recurso para la conservación de la especie, e identificamos aspectos demográficos históricos y actuales, entre los que destaca su bajo tamaño efectivo poblacional. Finalmente, en cada capítulo se proponen acciones concretas para la conservación y manejo de esta especie en Colombia. (Texto tomado de la fuente) | |
dc.description.abstract | The Orinoco Crocodile (Crocodylus intermedius) is critically endangered due to the indiscriminate hunting it suffered during the last century to satisfy the American and European leather demand. Therefore, today it is represented by isolated individuals, few remaining groups, and to a large extent, ex situ populations established for conservation purposes in Colombia and Venezuela. Likewise, legislation and state conservation plans have been developed, which, in the case of Colombia, have suggested the evaluation of the in situ genetic status of the species, seeking to preserve its evolutionary potential. The present investigation was developed aiming baseline information to propose concrete and effective actions towards the species conservation. In the first chapter, we re-evaluated the approach made using mitochondrial DNA fragments that suggested managing the species as a single genetic unit. To do this, we used variable molecular markers (microsatellites and the control region of mitochondria). As a result, we identified three genetic groups with geographic correspondence in the Colombian Orinoquía: i) Eastern Meta River Basin, ii) Western Meta and Vichada River Basins, and iii) Guaviare River Basin. Furthermore, we estimated aspects such as gene flow, propose hypotheses that may explain its structure, and performed the assignment of seized individuals whose origin was unknown. In the second chapter, we achieved the genetic characterization of the population that inhabits the Cravo Norte-Ele-Lipa River System and the egg ranching program for conservation purposes that is being locally
developed. We identified the population as a valuable resource for the conservation of the species and evaluated historical and present demographic aspects, among which its low effective population size stands out. Finally, in each chapter we propose concrete actions for the conservation and management of the species in Colombia. | |
dc.language | eng | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Biología | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Allendorf, F. W., Luikart, G. H., & Aitken, S. N. (2012). Conservation and the Genetics of Populations. Wiley. https://books.google.com.co/books?id=VVploytG8jYC | |
dc.relation | Amavet, P. S., Barban Zucoloto, R., Hrbek, T., & Farias Pires, I. (2021). Genetic diversity of new
world crocodilians. In R. Barban Zucoloto, P. S. Amavet, L. Martins Verdade, & I. Farias Pires
(Eds.), Conservation Genetics of New World Crocodilians (pp. 123–152). Springer.
https://doi.org/10.1007/978-3-030-56383-7 | |
dc.relation | Amavet, P. S., Rueda, E. C., Vilardi, J. C., Siroski, P., Larriera, A., & Saidman, B. O. (2017). The
broad-snouted caiman population recovery in Argentina. A case of genetics conservation.
Amphibia Reptilia, 38(4), 411–424. https://doi.org/10.1163/15685381-00003123 | |
dc.relation | Antelo, R., Ayarzagüena, J., & Castroviejo, J. (2008). Biología del cocodrilo o caimán del Orinoco
(Crocodylus intermedius) en la Estación Biológica El Frío, Estado Apure. Lozania, 336. | |
dc.relation | Antelo, R., Vargas-Ramírez, M., Preciado, G., Saavedra-Rodríguez, C. A., & Forero-Medina, G.
(2022). Plan de acción interinstitucional para la conservación del caimán llanero (Crocodylus
intermedius) en Colombia. Wildlife Conservation Society, Estación de Biología Tropical
Roberto Franco, Gobernación de Casanare y Universidad Nacional. | |
dc.relation | Anzola, L. F. (2017). Abundancia poblacional , aspectos reproductivos y percepción de los
habitantes locales, del Caimán LLanero (Crocodylus intermedius, Graves, 1819) en los ríos
Lipa, Ele y Cravo Norte del Departamento de Arauca. Bol. Acad. C. Fís., Mat. y Nat.,
LXXVII(2–3), 147–158. | |
dc.relation | Anzola, L. F., & Antelo, R. (2015). First data of natural recovery of any Orinoco crocodile
Crocodylus intermedius population: Evidence from nesting. Herpetological Bulletin, 134, 10–
14. | |
dc.relation | Ardila-Robayo, M. C., Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (2002). Monitoreo
poblacional de Crocodylus intermedius (caimán llanero) en los ríos Guayabero y Duda
(municipio de la Macarena - Meta). | |
dc.relation | Ardila-Robayo, M. C., Barahona-Buitrago, S. L., Bonilla-Centeno, O. P., & Clavijo, B. J. (2002).
Actualización del status poblaciones de Caimán del Orinoco (Crocodylus intermedius) en el
Departamento de Arauca (Colombia). Memorias del Taller para la Conservación del Caimán
del Orinoco (Crocodylus intermedius) en el Colombia y Venezuela. | |
dc.relation | Ardila-Robayo, M. C., Martínez-Barreto, W., Suárez-Daza, R. M., & Moreno-Torres, C. A. (2010).
La Estación Roberto Franco (EBTRF) y el cocodrilo del Orinoco en Colombia: contribución a
su biología y conservación. Revista Latinoamericana de Conservación, 1(2), 120–130.
http://lajoc.procat-conservation.org/ojs/index.php/procat/article/view/60 | |
dc.relation | Avila-cervantes, J., & Larsson, H. C. E. (2023). Ice Age effects on genetic divergence of the
American crocodile ( Crocodylus acutus ) in Panama : reconstructing limits of gene flow and
environmental ranges : a reply to O ’ Dea et al . 77(December 2022), 329–334. | |
dc.relation | Balaguera-Reina, S. A., Espinosa-Blanco, A., Antelo, R., Morales-Betancourt, M., & Seijas, A.
(2018). Crocodylus intermedius (errata version published in 2020). The IUCN Red List of Threatened Species 2018: E.T5661A181089024.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018- 1.RLTS.T5661A181089024.en | |
dc.relation | Balaguera-Reina, S. A., Espinosa-Blanco, A. S., Morales-Betancourt, M. A., Seijas, A. E., Lasso, C.
A., Antelo, R., & Densmore, L. D. (2017). Conservation status and regional habitat priorities
for the Orinoco crocodile: Past, present, and future. PLoS ONE, 12(2), 1–20.
https://doi.org/10.1371/journal.pone.0172439 | |
dc.relation | Balaguera-Reina, S. A., Moncada-Jimenez, J. F., Prada-Quiroga, C. F., Hernandez-Gonzalez, F.,
Bolaños-Cubillos, N. W., Farfán-Ardila, N., Garcia-Calderón, L. M., & Densmore, L. D.
(2021). Tracking a voyager: Mitochondrial DNA analyses reveal mainland-to-island dispersal
of an American crocodile (Crocodylus acutus) across the Caribbean. Biological Journal of the
Linnean Society, 131(3), 647–655. https://doi.org/10.1093/BIOLINNEAN/BLAA121 | |
dc.relation | Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (1999). Evaluación poblacional del Caimán
Llanero (Crocodylus intermedius) en un subareal de distribución en el departamento de Arauca
(Colombia). In Revista de la Academia Colombiana de Ciencias (Vol. 23, pp. 445–451). | |
dc.relation | Behling, H., & Hooghiemstra, H. (2001). Chapter 18 - Neotropical Savanna Environments in Space
and Time: Late Quaternary Interhemispheric Comparisons. In V. Markgraf (Ed.),
Interhemispheric Climate Linkages (pp. 307–323). Academic Press.
https://doi.org/https://doi.org/10.1016/B978-012472670-3/50021-5 | |
dc.relation | Bensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., & Pinheiro, R.
T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus
mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series
B: Biological Sciences, 267(1452), 1583–1589. https://doi.org/10.1098/rspb.2000.1181 | |
dc.relation | Bishop, J. M., Leslie, A. J., Bourquin, S. L., & O’Ryan, C. (2009). Reduced effective population
size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biological
Conservation, 142(10), 2335–2341.
https://doi.org/https://doi.org/10.1016/j.biocon.2009.05.016 | |
dc.relation | Bittencourt, P. S., Campos, Z., De Lima Muniz, F., Marioni, B., Souza, B. C., Silveira, R. Da, De
Thoisy, B., Hrbek, T., & Farias, I. P. (2019). Evidence of cryptic lineages within a small South
American crocodilian: The Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae:
Caimaninae). PeerJ, 2019(3), 1–26. https://doi.org/10.7717/peerj.6580 | |
dc.relation | Blomqvist, D., Pauliny, A., Larsson, M., & Flodin, L. Å. (2010). Trapped in the extinction vortex?
Strong genetic effects in a declining vertebrate population. BMC Evolutionary Biology, 10(1),
1–9. https://doi.org/10.1186/1471-2148-10-33 | |
dc.relation | Bustamante, C. (Ed.). (2019). El Gran Libro de la Orinoquia Colombiana. Instituto de Investigación
de Recursos Biológicos Alexander von Humboldt (IAvH), Deutsche Gessellschaft für
Internationale Zusammenarbeit (GIZ) GmbH. | |
dc.relation | Campos, J. C., Mobaraki, A., Abtin, E., Godinho, R., & Brito, J. C. (2018). Preliminary assessment
of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphibia
Reptilia, 39(1), 126–131. https://doi.org/10.1163/15685381-16000173 | |
dc.relation | Casal, A. C., Fornelino, M. M., Restrepo, M. F. G., Torres, M. A. C., & Velasco, F. G. (2013). Uso
histórico y actual del caimán llanero (Crocodylus intermedius) en la Orinoquia (Colombia-Venezuela). Biota Colombiana, 14(1), 65–82. | |
dc.relation | Castro, A., Merchán, M., Garcés, M., Cárdenas, M., & Gómez, F. (2012). New data on the
Conservation Status of the Orinoco crocodile (Crocodylus intermedius) in Colombia.
Proceedings of the 21th Working Meeting of the Crocodile Specialist Group, IUCN, January,
65–73. | |
dc.relation | Castro, A., Merchán, M., Gómez, F., Garcés, M. F., & Cárdenas, M. A. (2011). Nuevos datos sobre
la presencia de caimán llanero (Crocodylus intermedius) y notas sobre su comportamiento en
el río Vichada, Orinoquia (Colombia). Biota Colombiana, 12(1), 137–144.
https://doi.org/10.21068/bc.v12i1.244 | |
dc.relation | Castro Casal, A. (2012). Generalidades sobre la biología y el comportamiento del Cocodrilo del
Orinoco (Crocodylus intermedius) (pp. 17–56). | |
dc.relation | Cedeño-Vázquez, J. R., Platt, S. G., & Thorbjarnarson, J. (2012). Crocodylus moreletii. The IUCN
Red List of Threatened Species 2012: e.T5663A3045579.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T5663A3045579.en | |
dc.relation | Choudhury, B. C., & de Silva, A. (2013). Crocodylus palustris. The IUCN Red List of Threatened
Species 2013: e.T5667A3046723. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2013-
2.RLTS.T5667A3046723.en | |
dc.relation | CITES. (2017). Appendices I, II and III valid from 4 October 2017. In CITES-UNEP.
https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf | |
dc.relation | Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene
genealogies. Molecular Ecology, 9(10), 1657-1660. | |
dc.relation | Cohen, J. I., & Ruane, L. G. (2022). Conservation genetics of Phlox hirsuta, a serpentine endemic.
Conservation Genetics, 0123456789. https://doi.org/10.1007/s10592-022-01478-y | |
dc.relation | Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent
population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014.
https://doi.org/10.1093/genetics/144.4.2001 | |
dc.relation | Davis, L. M., Glenn, T. C., Strickland, D. C., Guillette, L. J., Elsey, R. M., Rhodes, W. E., Dessauer,
H. C., & Sawyer, R. H. (2002). Microsatellite DNA analyses support an east-west
phylogeographic split of American alligator populations. Journal of Experimental Zoology,
294(4), 352–372. https://doi.org/10.1002/jez.10189 | |
dc.relation | de Thoisy, B., Hrbek, T., Farias, I. P., Vasconcelos, W. R., & Lavergne, A. (2006). Genetic structure,
population dynamics, and conservation of Black caiman (Melanosuchus niger). Biological
Conservation, 133(4), 474–482. https://doi.org/10.1016/j.biocon.2006.07.009 | |
dc.relation | Dever, J. A., & Densmore, L. D. (2001). Microsatellites in Morelet’s Crocodile (Crocodylus
moreletii) and Their Utility in Addressing Crocodilian Population Genetics Questions. Journal
of Herpetology, 35(3), 541–544. | |
dc.relation | Dever, J. A., Strauss, R. E., Rainwater, T., & Densmore, L. D. (2002). Genetic Diversity, Population
Subdivision, and Gene Flow in Morelet’s Crocodile (Crocodylus moreletii) from Belize, Central America. December 2002. https://doi.org/10.1643/0045-8511(2002)002 | |
dc.relation | Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994).
Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the
National Academy of Sciences of the United States of America, 91(8), 3166–3170.
https://doi.org/10.1073/pnas.91.8.3166 | |
dc.relation | Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator
v2: re-implementation of software for the estimation of contemporary effective population size
(Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214.
https://doi.org/https://doi.org/10.1111/1755-0998.12157 | |
dc.relation | Dominguez, M., Pizzarello, G., Atencio, M., Scardamaglia, R., & Mahler, B. (2019). Genetic
assignment and monitoring of yellow cardinals. Journal of Wildlife Management, 83(6), 1336–
1344. https://doi.org/10.1002/jwmg.21718 | |
dc.relation | Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using
the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620.
https://doi.org/10.1111/j.1365-294X.2005.02553.x | |
dc.relation | Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform
population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3),
564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x | |
dc.relation | Faubet, P., Waples, R. S., & Gaggiotti, O. E. (2007). Evaluating the performance of a multilocus
Bayesian method for the estimation of migration rates. Molecular Ecology, 16(6), 1149–1166.
https://doi.org/10.1111/j.1365-294X.2007.03218.x | |
dc.relation | Fitzsimmons, N. N., Tanksley, S., Forstner, M. R. J., Louis, E. E., Daglish, R., Gratten, J., & Davis,
S. (2001). Microsatellite markers for Crocodylus: new genetic tools for population genetics,
mating system studies and forensics. In Crocodilian Biology and Evolution (pp. 51–57). | |
dc.relation | Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review.
Genetical Research, 66(2), 95–107. https://doi.org/10.1017/S0016672300034455 | |
dc.relation | Frankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation
Biology, 10(6), 1500–1508. http://dx.doi.org/10.1046/j.1523-1739.1996.10061500.x | |
dc.relation | Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and
consistent benefits of gene flow. Molecular Ecology, 24(11), 2610–2618.
https://doi.org/10.1111/mec.13139 | |
dc.relation | Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster,
C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology,
25(3), 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.x | |
dc.relation | Frankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management:
Revised recommendations for the 50/500 rules, Red List criteria and population viability
analyses. Biological Conservation, 170, 56–63.
https://doi.org/https://doi.org/10.1016/j.biocon.2013.12.036 | |
dc.relation | Franklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. A. Wilcox
(Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 135–150). Sinauer Associates. | |
dc.relation | Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking
and background selection. Genetics, 147(2), 915–925.
https://doi.org/10.1093/genetics/147.2.915 | |
dc.relation | García-Dorado, A. (2015). On the consequences of ignoring purging on genetic recommendations
for minimum viable population rules. Heredity, 115(3), 185–187.
https://doi.org/10.1038/hdy.2015.28 | |
dc.relation | Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from
microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365-
294x.2001.01190.x | |
dc.relation | Gillespie, J. H. (2004). Population Genetics: A Concise Guide. Johns Hopkins University Press.
https://books.google.com.co/books?id=eslingEACAAJ | |
dc.relation | Gilpin, M., & Soulé, M. E. (1986). Minimum viable populations : Processes of species extinction.
In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological
prospective (pp. 19–34). Sinauer Associates. | |
dc.relation | Glenn, T. C., Staton, J. L., Vu, A. T., Davis, L. M., Alvarado Bremer, J. R., Rhodes, W. E., Brisbin,
I. L., & Sawyer, R. H. (2002). Low mitochondrial DNA variation among American alligators
and a novel non-coding region in crocodilians. Journal of Experimental Zoology, 294(4), 312–
324. https://doi.org/10.1002/jez.10206 | |
dc.relation | Gottelli, D., Sillero-Zubiri, C., Marino, J., Funk, S. M., & Wang, J. (2013). Genetic structure and
patterns of gene flow among populations of the endangered Ethiopian wolf. Animal
Conservation, 16(2), 234–247. https://doi.org/10.1111/j.1469-1795.2012.00591.x | |
dc.relation | Goudet, J. (2003). Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters.
Updated from Goudet (1995). http://www.unil.ch/izea/softwares/fstat. html | |
dc.relation | Guillot, G., Mortier, F., & Estoup, A. (2005). GENELAND: A computer package for landscape
genetics. Molecular Ecology Notes, 5(3), 712–715. https://doi.org/10.1111/j.1471-
8286.2005.01031.x | |
dc.relation | Gustafson, K. D., Gagne, R. B., Buchalski, M. R., Vickers, T. W., Riley, S. P. D., Sikich, J. A.,
Rudd, J. L., Dellinger, J. A., LaCava, M. E. F., & Ernest, H. B. (2022). Multi-population puma
connectivity could restore genomic diversity to at-risk coastal populations in California.
Evolutionary Applications, 15(2), 286–299. https://doi.org/10.1111/eva.13341 | |
dc.relation | Hall, T. (2005). BioEdit: Biological sequence alignmet editor for Win95/98/NT/2K/XP (7.0.5). Ibis
Therapeutics. | |
dc.relation | Hartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates.
https://books.google.com.co/books?id=4ypuQgAACAAJ | |
dc.relation | Hekkala, E. R., Amato, G., DeSalle, R., & Blum, M. J. (2010). Molecular assessment of population
differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus)
populations. Conservation Genetics, 11(4), 1435–1443. https://doi.org/10.1007/s10592-009-9970-5 | |
dc.relation | Hernández-Camacho, J., Hurtado G., A., Ortiz Quijano, R., & Walschburger, T. (1992). Unidades
biogeográficas de Colombia. In G. Halffter (Ed.), La diversidad biológica de Iberoamérica
(Vol. 1, pp. 105–152). | |
dc.relation | Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium.
Genetical Research, 38(3), 209–216. https://doi.org/10.1017/S0016672300020553 | |
dc.relation | Hinlo, M. R. P., Tabora, J. A. G., Bailey, C. A., Trewick, S., Rebong, G., van Weerd, M., Pomares,
C. C., Engberg, S. E., Brenneman, R. A., & Louis, Jr., E. E. (2014). Population genetics
implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt,
1935 (Crocodylia: Crocodylidae). Journal of Threatened Taxa, 6(3), 5513–5533.
https://doi.org/10.11609/jott.o3384.5513-33 | |
dc.relation | Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population
structure with the assistance of sample group information - HUBISZ - 2009 - Molecular
Ecology Resources - Wiley Online Library. Molecular Ecology Resources, 9(5), 1322–1332. | |
dc.relation | IDEAM. (2020). Presentación Deforestación 2020.
http://www.ideam.gov.co/documents/10182/113437783/Presentacion_Deforestacion%0A202
0_SMByC-IDEAM.pdf/8ea7473e-3393-4942-8b75-88967ac12a19 | |
dc.relation | Iriondo, M. (1999). Climatic changes in the South American plains: Records of a continent-scale
oscillation. Quaternary International, 57–58, 93–112. https://doi.org/10.1016/S1040-
6182(98)00053-6 | |
dc.relation | Isberg, S., Combrink, X., Lippai, C., & Balaguera-Reina, S. A. (2019). Crocodylus niloticus. The
IUCN Red List of Threatened Species 2019: e.T45433088A3010181.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T45433088A3010181.en | |
dc.relation | Jablonski, D., Ribeiro-Júnior, M. A., Meiri, S., Maza, E., Kukushkin, O. V., Chirikova, M., Pirosová,
A., Jelic, D., Mikulícek, P., & Jandzik, D. (2021). Morphological and genetic differentiation in
the anguid lizard Pseudopus apodus supports the existence of an endemic subspecies in the
Levant. Vertebrate Zoology, 71, 175–200. https://doi.org/10.3897/VZ.71.E60800 | |
dc.relation | Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program
for dealing with label switching and multimodality in analysis of population structure.
Bioinformatics, 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 | |
dc.relation | Jamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs? Trends in
Ecology and Evolution, 27(10), 578–584. https://doi.org/10.1016/j.tree.2012.07.001 | |
dc.relation | Jamieson, I. G., Grueber, C. E., Waters, J. M., & Gleeson, D. M. (2008). Managing genetic diversity
in threatened populations: a New Zealand perspective. New Zealand Journal of Ecology, 32(1),
130–137. http://www.jstor.org/stable/24058111 | |
dc.relation | Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers.
Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 | |
dc.relation | Jones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from
multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555.
https://doi.org/10.1111/j.1755-0998.2009.02787.x | |
dc.relation | Kalinowski, S. T. (2005). HP-RARE 1.0: A computer program for performing rarefaction on
measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189.
https://doi.org/10.1111/j.1471-8286.2004.00845.x | |
dc.relation | Li, Y. L., & Liu, J. X. (2018). StructureSelector: A web-based software to select and visualize the
optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176–
177. https://doi.org/10.1111/1755-0998.12719 | |
dc.relation | Lugo-Rugeles, L. M., & Ardila-Robayo, M. C. (1998). Programa para la conservación del caiman
del Orinoco (Crocodylus intermedius) en Colombia. Proyecto 290. Programa Research
Fellowship NYZS. Wildlife Conservation Society. Proyecto 1101-13- 205-92 Colciencias. | |
dc.relation | Luikart, G., & Cornuet, J.-M. (1998). Empirical Evaluation of a Test for Identifying Recently
Bottlenecked Populations from Allele Frequency Data. Conservation Biology, 12(1), 228–237.
https://doi.org/https://doi.org/10.1111/j.1523-1739.1998.96388.x | |
dc.relation | Markert, J. A., Denise M. Champlin, Ruth Gutjahr-Gobell, Jason S. Grear, Anne Kuhn, Thomas J.
McGreevy, Annette Roth, Mark J. Bagley, & Diane E. Nacci. (2010). Population genetic
diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(205), 1–13.
http://www.biomedcentral.com/1471-2148/10/205 | |
dc.relation | Martin, S. (2008). Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia,
595(1), 587–591. https://doi.org/10.1007/s10750-007-9030-4 | |
dc.relation | Mcvay, J. D., Rodriguez, D., Rainwater, T. R., Dever, J. A., Platt, S. G., Mcmurry, S. T., Forstner,
M. R. J., & Densmore, L. D. (2008). Evidence of multiple paternity in Morelet’s Crocodile
(Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. Journal of
Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 643–648.
https://doi.org/10.1002/jez.500 | |
dc.relation | Medem, F. (1981). Los Crocodylia de Sur America: Los Crocodylia de Colombia. Vol. 1. Ministerio
de Educacion Nacional, Fondo Colombiano de Investigaciones Científicas y Proyectos
Especiales “Francisco José de Caldas.” | |
dc.relation | Meirmans, P. G. (2014). Nonconvergence in Bayesian estimation of migration rates. Molecular
Ecology Resources, 14(4), 726–733. https://doi.org/10.1111/1755-0998.12216 | |
dc.relation | Miles, L. G., Isberg, S. R., Moran, C., Hagen, C., & Glenn, T. C. (2009). 253 Novel polymorphic
microsatellites for the saltwater crocodile (Crocodylus porosus). Conservation Genetics, 10(4),
963–980. https://doi.org/10.1007/s10592-008-9600-7 | |
dc.relation | Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Sosa-Rodríguez, G., Guerra-Manchena,
L., Alonso-Tabet, M., Espinosa-López, G., & Russello, M. A. (2015). Genetic evidence of
hybridization between the critically endangered Cuban crocodile and the American crocodile:
implications for population history and in situ/ex situ conservation. Heredity, 114(3), 272–280.
https://doi.org/10.1038/hdy.2014.96 | |
dc.relation | Milián-García, Y., Russello, M. A., Castellanos-Labarcena, J., Cichon, M., Kumar, V., Espinosa, G., Rossi, N., Mazzotti, F., Hekkala, E., Amato, G., & Janke, A. (2018). Genetic evidence supports
a distinct lineage of American crocodile (Crocodylus acutus) in the Greater Antilles. PeerJ,
2018(11), 1–16. https://doi.org/10.7717/peerj.5836 | |
dc.relation | Ministerio de Ambiente. (2016). Visión Amazonía.
https://www.minambiente.gov.co/index.php/component/content/article/2138plantilla%0Abosques-biodiversidad-y-servicios-ecosistematicos-62 | |
dc.relation | MMA. (2002). Programa Nacional para la Conservación del Caimán Llanero. 31. | |
dc.relation | Mora-Fernández, C., Peñuela-Recio, L., & Castro-Lima, F. (2015). Estado del conocimiento de los
ecosistemas de las sabanas inundables en la Orinoquia Colombiana TT - State of the
knowledge of the flooded savanna ecosystems of Orinoquia Colombiana TT - Estado do
conhecimento sobre os ecossistemas das savanas inundadas. Orinoquia, 19(2), 253–271. | |
dc.relation | Morales-Betancourt, M. A., Lasso, C. A., Gutiérrez, F. de P., Martínez-Barreto, W., Ardila-Robayo,
M. C., Moreno-Arias, R. A., Suarez-Daza, R. M., Clavijo, J., Anzola, L. F., Antelo, R., Lugo,
M., & Trujillo, F. (2019). Identificación de áreas y estrategias para la conservación del caimán
llanero (Crocodylus intermedius) en la Orinoquia colombiana. In M. C. Ardila-Robayo & W.
Martínez-Barreto (Eds.), Homenaje a Federico Medem, aportes a la herpetología colombiana
(1st ed., pp. 13–28). Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de
Ciencias Naturales. | |
dc.relation | Morales-Betancourt, M. A., Lasso, C. A., Martínez, W., Ardila-Robayo, M. C., & Bloor, P. (2015).
Caimán llanero (Crocodylus intermedius). In M. A. Morales-Betancourt, C. A. Lasso, V. P.
Páez, & B. C. Bock (Eds.), Libro rojo de reptiles de Colombia (p. 258). Instituto de
Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de
Antioquia. | |
dc.relation | Moreno-Arias, R. A., & Ardila-Robayo, M. C. (2020). Journeying to freedom: The spatial ecology
of a reintroduced population of Orinoco crocodiles (Crocodylus intermedius) in Colombia.
Animal Biotelemetry, 8(1), 1–13. https://doi.org/10.1186/s40317-020-00202-2 | |
dc.relation | Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology
& Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4 | |
dc.relation | Muniz, F. L., Ximenes, A. M., Bittencourt, P. S., Hernández-Rangel, S. M., Campos, Z., Hrbek, T.,
& Farias, I. P. (2019). Detecting population structure of Paleosuchus trigonatus (Alligatoridae:
Caimaninae) through microsatellites markers developed by next generation sequencing.
Molecular Biology Reports, 46(2), 2473–2484. https://doi.org/10.1007/s11033-019-04709-7 | |
dc.relation | Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular
data. II. Gene frequency data. Journal of Molecular Evolution, 19(2), 153–170.
https://doi.org/10.1007/BF02300753 | |
dc.relation | Neuwald, J. L. (2010). Population isolation exacerbates conservation genetic concerns in the
endangered Amargosa vole, Microtus californicus scirpensis. Biological Conservation, 143(9),
2028–2038. https://doi.org/10.1016/j.biocon.2010.05.007 | |
dc.relation | Oaks, J. R. (2011). A time-calibrated species tree of crocodylia reveals a recent radiation of the true
crocodiles. Evolution, 65(11), 3285–3297. https://doi.org/10.1111/j.1558-5646.2011.01373.x | |
dc.relation | Pacheco-Sierra, G., Vázquez-Domínguez, E., Pérez-Alquicira, J., Suárez-Atilano, M., &
Domínguez-Laso, J. (2018). Ancestral hybridization yields evolutionary distinct hybrids
lineages and species boundaries in crocodiles, posing unique conservation conundrums.
Frontiers in Ecology and Evolution, 6(SEP). https://doi.org/10.3389/fevo.2018.00138 | |
dc.relation | Paetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population
structure in Canadian polar bears. Molecular Ecology, 4(3), 347–354.
https://doi.org/10.1111/j.1365-294x.1995.tb00227.x | |
dc.relation | Paetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct,
real-time estimation of migration rate: a simulation-based exploration of accuracy and power.
Molecular Ecology, 13(1), 55–65. https://doi.org/10.1046/j.1365-294x.2004.02008.x | |
dc.relation | Palstra, F. P., & Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population
size : what can they tell us about the importance of genetic stochasticity for wild population
persistence ? Molecular Ecology, 17, 3428–3447. https://doi.org/10.1111/j.1365-
294X.2008.03842.x | |
dc.relation | Peery, M. Z., Kirby, R., Reid, B. N., Stoelting, R., Doucet-Bëer, E., Robinson, S., Vásquez-Carrillo,
C., Pauli, J. N., & Palsboll, P. J. (2012). Reliability of genetic bottleneck tests for detecting
recent population declines. Molecular Ecology, 21(14), 3403–3418.
https://doi.org/10.1111/j.1365-294X.2012.05635.x | |
dc.relation | Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., & Estoup, A. (2004).
GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection.
Journal of Heredity, 95(6), 536–539. https://doi.org/10.1093/jhered/esh074 | |
dc.relation | Piry, S., Luikart, G., & Cornuet, J.-M. (1999). Computer note. BOTTLENECK: a computer program
for detecting recent reductions in the effective size using allele frequency data. J. Hered, 90.
https://doi.org/10.1093/jhered/90.4.502 | |
dc.relation | Posso-Peláez, C., Ibáñezand, C., & Bloor, P. (2018). Low mitochondrial DNA variability in the
captive breeding population of the critically endangered orinoco crocodile (Crocodylus
intermedius) from Colombia. Herpetological Conservation and Biology, 13(2), 347–354. | |
dc.relation | Preciado-Salas, B. A. (2018). Percepción, uso y conservación local del Caimán llanero (Crocodylus
intermedius) en el complejo de ríos Cravo Norte, Ele y Lipa (Arauca, Colombia) Trabajo de
grado para optar por el título de Magister en Conservación y Uso de la Biodiversidad.
Modalidad d [Pontificia Universidad Javeriana].
https://repository.javeriana.edu.co/bitstream/handle/10554/35678/Brigitte Preciado-Salas
Percepcion%2C Uso y Conservacion Local del Caiman
Llanero.pdf?sequence=2&isAllowed=y | |
dc.relation | Pritchard, J., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using
Multilocus Genotype Data. Genetics, 155, 9197–9201.
https://doi.org/10.1093/genetics/155.2.945 | |
dc.relation | Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population
structure when sampling is uneven: Subsampling and new estimators alleviate the problem.
Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512 | |
dc.relation | R Development Core Team. (2022). R: A language and environment for statistical computing. R
Foundation for Statistical Computing. https://www.r-project.org/ | |
dc.relation | Rainwater, T. R., Platt, S. G., Charruau, P., Balaguera-Reina, S. A., Sigler, L., Cedeño-Vázquez, J.
R., & Thorbjarnarson, J. B. (2021). Crocodylus acutus (amended version of 2021 assessment).
The IUCN Red List of Threatened Species 2022: e.T5659A212805700.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T5659A212805700.en | |
dc.relation | Ramasamy, R. K., Ramasamy, S., Bindroo, B. B., & Naik, V. G. (2014). STRUCTURE PLOT: A
program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus,
3(1), 1–3. https://doi.org/10.1186/2193-1801-3-431 | |
dc.relation | Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against
population growth. Molecular Biology and Evolution, 19(12), 2092–2100.
https://doi.org/10.1093/oxfordjournals.molbev.a004034 | |
dc.relation | Rannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes.
Proceedings of the National Academy of Sciences of the United States of America, 94(17),
9197–9201. https://doi.org/10.1073/pnas.94.17.9197 | |
dc.relation | Ray, D. A., & Densmore, L. (2002). The crocodilian mitochondrial control region: General structure,
conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294(4),
334–345. https://doi.org/10.1002/jez.10198 | |
dc.relation | Ray, D. A., & Densmore, L. D. (2003). Repetitive sequences in the crocodilian mitochondrial control
region: Poly-A sequences and heteroplasmic tandem repeats. Molecular Biology and
Evolution, 20(6), 1006–1013. https://doi.org/10.1093/molbev/msg117 | |
dc.relation | Ray, D. A., Dever, J. A., Platt, S. G., Rainwater, T. R., Finger, A. G., McMurry, S. T., Batzer, M.
A., Barr, B., Stafford, P. J., McKnight, J., & Densmore, L. D. (2004). Low levels of nucleotide
diversity in Crocodylus moreletii and evidence of hybridization with C. acutus. Conservation
Genetics, 5(4), 449–462. https://doi.org/10.1023/B:COGE.0000041024.96928.fe | |
dc.relation | Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity.
Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x | |
dc.relation | Rhode, C., Maduna, S. N., Roodt-Wilding, R., & Bester-Van Der Merwe, A. E. (2014). Comparison
of population genetic estimates amongst wild, F1 and F2 cultured abalone (Haliotis midae).
Animal Genetics, 45(3), 456–459. https://doi.org/10.1111/age.12142 | |
dc.relation | Rivera-Ortíz, F. A., Arizmendi, M. D. C., Juan-Espinosa, J., Solórzano, S., & Contreras-González,
A. M. (2021). Genetic assignment tests to identify the probable geographic origin of a captive
specimen of military macaw (Ara militaris) in mexico: Implications for conservation.
Diversity, 13(6). https://doi.org/10.3390/d13060245 | |
dc.relation | Roa, P. (1979). Estudio de los médanos de los Llanos Centrales de Venezuela: Evidencias de un
clima desértico. Acta Biológica Venezolana, 10, 19–49. | |
dc.relation | Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of
pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552–569.
https://doi.org/10.1093/oxfordjournals.molbev.a040727 | |
dc.relation | Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R., & Sherwin, W. B. (2009). Invasive species can’t cover their tracks: Using microsatellites to assist management of starling (Sturnus
vulgaris) populations in Western Australia. Molecular Ecology, 18(8), 1560–1573.
https://doi.org/10.1111/j.1365-294X.2009.04132.x | |
dc.relation | Rossi Lafferriere, N. A., Antelo, R., Alda, F., Martensson, D., Hailer, F., Castroviejo-Fisher, S.,
Ayarzagöena, J., Ginsberg, J. R., Castroviejo, J., Doadrio, I., Vilá, C., & Amato, G. (2016).
Multiple paternity in a reintroduced population of the orinoco crocodile (Crocodylus
intermedius) at the El frío biological station, Venezuela. PLoS ONE, 11(3), 1–16.
https://doi.org/10.1371/journal.pone.0150245 | |
dc.relation | Rossi Lafferriere, N. A., Menchaca-Rodriguez, A., Antelo, R., Wilson, B., McLaren, K., Mazzotti,
F., Crespo, R., Wasilewski, J., Alda, F., Doadrio, I., Barros, T. R., Hekkala, E., Alonso-Tabet,
M., Alonso-Giménez, Y., Lopez, M., Espinosa-Lopez, G., Burgess, J., Thorbjarnarson, J. B.,
Ginsberg, J. R., … Amato, G. (2020). High levels of population genetic differentiation in the
American crocodile (Crocodylus acutus). Plos One, 15(7), e0235288.
https://doi.org/10.1371/journal.pone.0235288 | |
dc.relation | Rousset, F. (2008). GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for
Windows and Linux. Molecular Ecology Resources, 8, 103–106.
https://doi.org/10.1111/j.1471-8286.2007.01931.x | |
dc.relation | Rousset, F., & Raymond, M. (1995). Testing heterozygote excess and deficiency. Genetics, 140(4),
1413–1419. https://doi.org/10.1093/genetics/140.4.1413 | |
dc.relation | Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins,
S. E., & Sánchez-García, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of
Large Datasets. Molecular Biology and Evolution, 34, 3299–3302. | |
dc.relation | Russello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J., & Caccone, A. (2007). Molecular
assessment of the genetic integrity, distinctiveness and phylogeographic context of the
Saltwater crocodile (Crocodylus porosus) on Palau. Conservation Genetics, 8(4), 777–787.
https://doi.org/10.1007/s10592-006-9225-7 | |
dc.relation | Ryberg, W. A., Fitzgerald, L. A., Honeycutt, R. L., & Cathey, J. C. (2002). Genetic relationships of
American alligator populations distributed across different ecological and geographic scales.
Journal of Experimental Zoology, 294(4), 325–333. https://doi.org/10.1002/jez.10207 | |
dc.relation | Saldarriaga-Gómez, A. M. (2021). Conservation genetics of the largest captive population of the
critically endangered Orinoco crocodile (Crocodylus intermedius): a contribution for its
survival [Universidad Nacional de Colombia].
https://repositorio.unal.edu.co/handle/unal/80488 | |
dc.relation | Seijas, A. E., Antelo, R., & Hernández, O. (2015). Caimán del Orinoco, Crocodylus intermedius. In
J. P. Rodríguez, A. García-Rawlns, & F. Rojas-Suárez (Eds.), Libro Rojo de la Fauna
Venezolana (Forth). Provita y Fundación Empresas Polar. | |
dc.relation | Seijas, A. E., Antelo, R., Thorbjarnarson, J. B., & Robayo, M. C. A. (2010). Orinoco Crocodile
Crocodylus intermedius. Crocodiles: An Action Plan for Their Conservation., 59–65. | |
dc.relation | Shaffer, M. L. (1981). Minimum Population Sizes for Species Conservation. BioScience, 31(2), 131–
134. https://doi.org/10.2307/1308256 | |
dc.relation | Sharma, S. P., Ghazi, M. G., Katdare, S., Dasgupta, N., Mondol, S., Gupta, S. K., & Hussain, S. A.
(2021). Microsatellite analysis reveals low genetic diversity in managed populations of the
critically endangered gharial (Gavialis gangeticus) in India. Scientific Reports, 11(1), 1–10.
https://doi.org/10.1038/s41598-021-85201-w | |
dc.relation | Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA
polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585 | |
dc.relation | Targarona, R. R., Soberón, R. R., Cotayo, L., Tabet, M. A., & Thorbjarnarson, J. (2008). Crocodylus
rhombifer (errata version published in 2017). The IUCN Red List of Threatened Species 2008:
e.T5670A112902585.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T5670A11516438.en | |
dc.relation | Thorbjarnarson, J. B. (1987). Status, ecology and conservation of the Orinoco Crocodile.
Preliminary Report. | |
dc.relation | Thorbjarnarson, J. B. (1989). Ecology of the American crocodile, Crocodylus actus. In P. Hall & R.
Bryant (Eds.), Crocodiles, their ecology, management and conservation a special publication
of the crocodile specialist group (pp. 228–258). IUCN Publications. | |
dc.relation | Thorbjarnarson, J. B. ., & Hernández, G. (1993). Reproductive Ecology of the Orinoco Crocodile
(Crocodylus intermedius) in Venezuela . II . Reproductive and Social Behavior. Herpetological
Journal, 27(4), 371–379. | |
dc.relation | Turba, R., Richmond, J. Q., Fitz-Gibbon, S., Morselli, M., Fisher, R. N., Swift, C. C., Ruiz-Campos,
G., Backlin, A. R., Dellith, C., & Jacobs, D. K. (2022). Genetic structure and historic
demography of endangered unarmoured threespine stickleback at southern latitudes signals a
potential new management approach. Molecular Ecology, March, 6515–6530.
https://doi.org/10.1111/mec.16722 | |
dc.relation | van Asch, B., Versfeld, W. F., Hull, K. L., Leslie, A. J., Matheus, T. I., Beytell, P. C., du Preez, P.,
Slabbert, R., & Rhode, C. (2019). Phylogeography, genetic diversity, and population structure
of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE,
14(12), 1–21. https://doi.org/10.1371/journal.pone.0226505 | |
dc.relation | van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). micro-checker:
software for identifying and correcting genotyping errors in microsatellite data. Molecular
Ecology Notes, 4(3), 535–538. https://doi.org/https://doi.org/10.1111/j.1471-
8286.2004.00684.x | |
dc.relation | van Weerd, M., C. Pomaro, C., de Leon, J., Antolin, R., & Mercado, V. (2016). Crocodylus
mindorensis. The IUCN Red List of Threatened Species 2016: e.T5672A3048281.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T5672A3048281.en | |
dc.relation | Vandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic
diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6, 1–12.
https://doi.org/10.1186/1741-7007-6-46 | |
dc.relation | Vasconcelos, W. R., Hrbek, T., Da Silveira, R., De Thoisy, B., Dos Santos Ruffeil, L. A. A., &
Farias, I. P. (2008). Phylogeographic and conservation genetic analysis of the Black Caiman
(Melanosuchus niger). Journal of Experimental Zoology Part A: Ecological Genetics and
Physiology, 309(10), 600–613. https://doi.org/10.1002/jez.452 | |
dc.relation | Vashistha, G., Deepika, S., Dhakate, P. M., Khudsar, F. A., & Kothamasi, D. (2020). The
effectiveness of microsatellite DNA as a genetic tool in crocodilian conservation. Conservation
Genetics Resources, 12(4), 733–744. https://doi.org/10.1007/s12686-020-01164-6 | |
dc.relation | Velo-Antón, G., Godinho, R., Campos, J. C., & Brito, J. C. (2014). Should i stay or should i go?
Dispersal and population structure in small, isolated desert populations of west african
crocodiles. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094626 | |
dc.relation | Villamarín, F., Escobedo-Galván, A. H., Siroski, P., & Magnusson, W. E. (2021). Geographic
Distribution, Habitat, Reproduction, and Conservation Status of Crocodilians in the Americas.
In R. B. Zucoloto, P. S. Amavet, L. M. Verdade, & I. P. Farias (Eds.), Conservation Genetics
of New World Crocodilians (pp. 1–30). Springer International Publishing.
https://doi.org/10.1007/978-3-030-56383-7_1 | |
dc.relation | von Humboldt, A. (1958). Vom Orinoko zum Amazonas: Reise in die Äquinoktial-Gegenden des
neuen Kontinents (A. Plott (Ed.)). F. A. Brockhaus.
https://books.google.com.co/books?id=Q%5C_GhugEACAAJ | |
dc.relation | Wang, J. (2009). A new method for estimating effective population sizes from a single sample of
multilocus genotypes. Molecular Ecology, 18(10), 2148–2164. https://doi.org/10.1111/j.1365-
294X.2009.04175.x | |
dc.relation | Waples, R. S. (2006). A bias correction for estimates of effective population size based on linkage
disequilibrium at unlinked gene loci. Conservation Genetics, 7(2), 167–184.
https://doi.org/10.1007/s10592-005-9100-y | |
dc.relation | Waples, R. S., & Do, C. (2010). Linkage disequilibrium estimates of contemporary Ne using highly
variable genetic markers: A largely untapped resource for applied conservation and evolution.
Evolutionary Applications, 3(3), 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x | |
dc.relation | Weaver, S., McGaugh, S. E., Kono, T. J. Y., Macip-Rios, R., & Gluesenkamp, A. G. (2022).
Assessing genomic and ecological differentiation among subspecies of the rough-footed mud
turtle, Kinosternon hirtipes. Journal of Heredity, 113(5), 538–551.
https://doi.org/10.1093/jhered/esac036 | |
dc.relation | Webb, G. J. W., Manolis, C., Brien, M. L., Balaguera-Reina, S. A., & Isberg, S. (2021). Crocodylus
porosus. The IUCN Red List of Threatened Species 2021: e.T5668A3047556.
https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T5668A3047556.en | |
dc.relation | Weeks, A. R., Heinze, D., Perrin, L., Stoklosa, J., Hoffmann, A. A., Van Rooyen, A., Kelly, T., &
Mansergh, I. (2017). Genetic rescue increases fitness and aids rapid recovery of an endangered
marsupial population. Nature Communications, 8(1), 1–6. https://doi.org/10.1038/s41467-017-
01182-3 | |
dc.relation | Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population
Structure. Evolution, 38(6), 1358–1370. https://doi.org/10.2307/2408641 | |
dc.relation | Wijmstra, T. A., & van der Hammen, T. (1966). Palynological data on the history of tropical
savannas in northern South America. Leidse Geologische Mededelingen, 38, 71–83. | |
dc.relation | Willi, Y., Kristensen, T. N., Sgro, C. M., Weeks, A. R., Ørsted, M., & Hoffmann, A. A. (2022). Conservation genetics as a management tool: The five best-supported paradigms to assist the
management of threatened species. Proceedings of the National Academy of Sciences of the
United States of America, 119(1), 1–10. https://doi.org/10.1073/pnas.2105076119 | |
dc.relation | Willoughby, J. R., Sundaram, M., Wijayawardena, B. K., Kimble, S. J. A., Ji, Y., Fernandez, N. B.,
Antonides, J. D., Lamb, M. C., Marra, N. J., & DeWoody, J. A. (2015). The reduction of genetic
diversity in threatened vertebrates and new recommendations regarding IUCN conservation
rankings. Biological Conservation, 191, 495–503.
https://doi.org/10.1016/j.biocon.2015.07.025 | |
dc.relation | Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus
genotypes. Genetics, 163(3), 1177–1191. https://doi.org/10.1093/genetics/163.3.1177 | |
dc.relation | Wright, S. (1939). Size of population and breeding structure in relation to evolution. Science, 87,
430–431. | |
dc.relation | Yang, J., & Jiang, Z. (2011). Genetic diversity, population genetic structure and demographic history
of Przewalski’s gazelle (Procapra przewalskii): Implications for conservation. Conservation
Genetics, 12(6), 1457–1468. https://doi.org/10.1007/s10592-011-0244-7 | |
dc.relation | Leigh, J. W., & Bryant, D. (2015). Popart: full-feature software for haplotype network construction.
Methods in Ecology and Evolutionl, 6: 1110-1116. https://doi.org/10.1111/2041-210X.12410 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana | |
dc.type | Trabajo de grado - Maestría | |